Journal of Linear and Topological Algebra Vol. 11, No. 03, 2022, 205-213 DOR: 20.1001.1.22520201.2022.11.03.5.0 DOI: 10.30495/JLTA.2022.695609

Mathematical structures via *e*-open sets

B. S. Ayhan^a

^a Quality Management Unit, Rectorate, Turkish-German University, 34820, Beykoz-Istanbul, Turkey.

Received 15 August 2022; Revised 29 September 2022; Accepted 30 September 2022. Communicated by Ghasem Soleimani Rad

Abstract. Considering the *e*-kernel defined by Özkoç and Ayhan [18] in a topological space, a new type of generalized closed set is studied through this article. The aim of this paper is to introduce a new class of sets called $ge\Lambda$ -closed sets and $ge\Lambda$ -open sets in a topological space and to study their properties and characterizations.

Keywords: *e*-open set, *e*-kernel, Λ -set, λ -closed set, λ -derived set.

2010 AMS Subject Classification: 54A99, 54D10, 54D40.

1. Introduction and preliminaries

First, in 1986, Maki [15] introduced the notion of Λ -sets in topological spaces. A Λ -set is a set A which is equal to its kernel (=saturated set) i.e. to the intersection of all open supersets of A. In 1997, Arenas et al. [2] defined and investigated the notion of λ -closed and λ -open sets by using Λ -sets and closed sets. Then, in 2008, Ekici [9] gave a new type of generalized open sets, called *e*-open sets. In this study, *ge* Λ -closed sets are introduced through these defined concepts.

Throughout this present paper, (X, τ) , (Y, σ) and (Z, η) (or simply X, Y and Z) represent topological spaces on which no separation axioms are assumed. For a subset A of a space X, the closure and the interior of A are denoted by cl(A) and int(A), respectively.

A subset A of a topological space X is said to be regular open (regular closed [19]) if A = int(cl(A)) (resp. A = cl(int(A))). A point x of X is said to be δ -cluster point [21] of A if $int(cl(U)) \cap A \neq \emptyset$ for each open neighbourhood U of x. The set of all δ -cluster points of A is called the δ -closure [21] of A and is denoted by $cl_{\delta}(A)$. If $A = cl_{\delta}(A)$, then

E-mail address: burcu.ayhan@tau.edu.tr, brcyhn@gmail.com (B. S. Ayhan).

A is called δ -closed [21], and the complement of a δ -closed set is called δ -open [21]. The set $\{x | (\exists U \in RO(X)) (x \in U \subseteq A)\}$ (equally $\{x | (\exists U \in \tau) (x \in U) (int(cl(U)) \subseteq A)\}$) is called the δ -interior of A and is denoted by $int_{\delta}(A)$.

A subset A is called semi-open [14] (resp. b-open [1], e-open [9]) if $A \subseteq cl(int(A))$ (resp. $A \subseteq cl(int(A)) \cup int(cl(A)), A \subseteq cl(int_{\delta}(A)) \cup int(cl_{\delta}(A)))$. The complement of a semi-open (resp. b-open, e-open) set is called semi-closed [14] (resp. b-closed [1], e-closed [9]). The intersection of all semi-closed (resp. b-closed, e-closed) sets of X containing A is called the semi-closure [14] (resp. b-closure [1], e-closure [9]) of A and is denoted by scl(A) (resp. bcl(A), e-cl(A)). The union of all semi-open (resp. b-open, e-open) sets of X contained in A is called the semi-interior [14] (resp. b-interior [1], e-interior [9]) of A and is denoted by sint(A) (resp. bint(A), e-int(A)). The family of all open (resp. closed, semi-open, semi-closed, b-open, b-closed, e-open, e-closed) subsets of X is denoted by O(X) (resp. $C(\tau)$, $O^S(X)$, $C^S(\tau)$, $O^B(X)$, $C^B(\tau)$, $O^e(X)$, $C^e(\tau)$).

The power set of X is the set of all possible subsets of X and denoted by $\mathcal{P}(X)$.

Definition 1.1 The kernel [15] (resp. s-kernel [16], γ -kernel [10], e-kernel [18]) of A is denoted by Ker(A) (resp. $Ker_s(A)$, $Ker_{\gamma}(A)$, $Ker_e(A)$) or A^{Λ} (resp. A^{Λ_s} , A^{Λ_b} , A^{Λ_e}). The kernels are defined as follows:

(a) $Ker(A) := \cap \{U | (A \subseteq U) (U \in O(X))\},\$

(b) $Ker_s(A) := \cap \{U | (A \subseteq U) (U \in O^S_{-}(X))\},\$

(c) $Ker_{\gamma}(A) := \cap \{U | (A \subseteq U)(U \in O^B(X))\},\$

(d) $Ker_e(A) := \cap \{U | (A \subseteq U) (U \in O^e(X))\}.$

In general Ker(A) (resp. $Ker_s(A)$, $Ker_{\gamma}(A)$, $Ker_e(A)$) neither an open (resp. semiopen, *b*-open, *e*-open) set, nor a closed (resp. semi-closed, *b*-closed, *e*-closed) set.

Lemma 1.2 [18] Let X be a topological space and $A \subseteq X$. Then

$$A^{\Lambda_e} = \{ x | (\forall E \in O^e(X)) (A \subseteq E) (x \in E) \}.$$

Definition 1.3 A subset A of X is called Λ -set [15] (resp. Λ_s -set [16], Λ_b -set [7], Λ_e -set [18]) if A = Ker(A) (resp. $A = Ker_s(A)$, $A = Ker_{\gamma}(A)$, $A = Ker_e(A)$). The collection of all Λ -sets (resp. Λ_s -sets, Λ_b -sets, Λ_e -set) is denoted by $O^{\Lambda}(X)$ (resp. $O^{\Lambda_s}(X)$, $O^{\Lambda_b}(X)$, $O^{\Lambda_e}(X)$).

Definition 1.4 A subset A of X is called:

- (a) λ -closed set [2] if $A = B \cap C$, where B is a Λ -set and C is a closed set.
- (b) g-closed set [13] if $cl(A) \subseteq U$, whenever $A \subseteq U$ and U is open.
- (c) λ -open [2] (resp. g-open [13]) set if $X \setminus A$ is λ -closed (resp. g-closed).
- (d) $g\Lambda$ -closed set [6] if $cl_{\lambda}(A) \subseteq U$, whenever $A \subseteq U$ and U is open.
- (e) g^* -closed set [12] if $cl(A) \subseteq U$, whenever $A \subseteq U$ and U is g-open.
- (f) Λq -closed set [6] if $cl_{\lambda}(A) \subseteq U$, whenever $A \subseteq U$ and U is λ -open.
- (g) sg-closed set [3] if $cl(A) \subseteq U$, whenever $A \subseteq U$ and U is semi-open.
- (h) qs-closed set [3] if $scl(A) \subseteq U$, whenever $A \subseteq U$ and U is q-open.
- (i) $gs\Lambda$ -closed set [16] if $cl_{\lambda}(A) \subseteq U$, whenever $A \subseteq U$ and U is semi-open.
- (j) $gb\Lambda$ -closed set [17] if $cl_{\lambda}(A) \subseteq U$, whenever $A \subseteq U$ and U is b-open.
- (k) w-closed set [20] if $cl(A) \subseteq U$, whenever $A \subseteq U$ and U is semi-open.

The collection of all λ -closed (resp. λ -open, g-closed, g-open, g^{*}-closed, gs-closed, sg-closed, gs Λ -closed, gb Λ -closed, g Λ -closed, Λ g-closed, w-closed) subsets of X is denoted by $O^{\lambda}(X)$ (resp. $C^{\lambda}(\tau), O^{g}(X), C^{g}(\tau), C^{g^{*}}(\tau), C^{gs}(\tau), C^{sg}(\tau), C^{gs}(\tau), C^{gb}(\tau), C^{g\Lambda}(\tau), C^{g\Lambda}(\tau), C^{\Lambda}(\tau), C^{\Lambda}(\tau), C^{\Lambda}(\tau)$

Lemma 1.5 [2] For a subset A of a space X, the following statements are equivalent: (1) A is λ -closed;

(2) $A = F \cap cl(A)$, where F is a Λ -set; (3) $A = Ker(A) \cap cl(A)$.

Definition 1.6 [5] Let X be a topological space and $A \subseteq X$. A point $x \in X$ is called λ -cluster (resp. λ -interior) point of A if for every (resp. there exists a) λ -open set U of X containing $x, A \cap U \neq \emptyset$ (resp. such that $U \subseteq A$). The collection of all λ -cluster (resp. λ -interior) points of A is called the λ -closure (resp. λ -interior) of A and denoted by $cl_{\lambda}(A)$ (resp. $int_{\lambda}(A)$).

Lemma 1.7 [4, 5] Let A and B be subsets of a topological space X. Then the following properties hold:

(1) A is λ -closed if and only if $cl_{\lambda}(A) = A$. (2) $cl_{\lambda}(A) \in C^{\lambda}(\tau)$ and $cl_{\lambda}(cl_{\lambda}(A)) = cl_{\lambda}(A)$. (3) $cl_{\lambda}(A) = \cap\{F | (F \in C^{\lambda}(\tau))(A \subseteq F)\}.$ (4) $A \subseteq cl_{\lambda}(A) \subseteq cl(A)$. (5) If $A \subseteq B$, then $cl_{\lambda}(A) \subseteq cl_{\lambda}(B)$. (6) $cl_{\lambda}(X \setminus A) = X \setminus int_{\lambda}(A)$.

Definition 1.8 [5] Let X be a topological space and $A \subseteq X$. A point $x \in X$ is called λ -limit point of A if for each λ -open set U containing $x, U \cap (A \setminus \{x\}) \neq \emptyset$. The collection of all λ -limit points of A is called a λ -derived set of A and denoted by $D_{\lambda}(A)$.

Lemma 1.9 [5] Let A be subset of a topological space X. Then the following properties hold:

(1) $D_{\lambda}(A) \subseteq D(A)$ where D(A) is the derived set of A. (2) If $A \subseteq X$, then $cl_{\lambda}(A) = A \cup D_{\lambda}(A)$.

2. The role of *e*-open sets as a kernel

Definition 2.1 Let X be a topological space. A subset A of X is called $ge\Lambda$ -closed if $cl_{\lambda}(A) \subseteq U$, whenever $A \subseteq U$ and U is e-open in X.

The collection of all $ge\Lambda$ -closed sets of X is denoted by $C^{ge\Lambda}(\tau)$.

Theorem 2.2 Let X be a topological space and $A \subseteq X$. Then, for $A \in C^{\lambda}(\tau), A \in C^{ge\Lambda}(\tau)$.

Proof. Follows from the fact that Lemma 1.7(1).

The following example shows that the reverse implication of Theorem 2.2 does not hold, in general.

Example 2.3 Let $X = \{e_1, e_2, e_3, e_4\}$ and $\tau = \{\emptyset, X, \{e_1\}, \{e_2\}, \{e_1, e_2\}, \{e_1, e_3\}, \{e_1, e_2, e_4\}\}$. Then the set $\{e_1, e_3, e_4\}$ is $ge\Lambda$ -closed, but it is not λ -closed.

Theorem 2.4 Let X be a topological space and $A \subseteq X$. If $A \in O^e(X) \cap C^{ge\Lambda}(\tau)$, then $A \in C^{\lambda}(\tau)$.

Proof. Let $A \in O^e(X)$ and $A \in C^{ge\Lambda}(\tau)$. $A \in O^e(X)$ $A \in C^{ge\Lambda}(\tau)$ $\Rightarrow cl_{\lambda}(A) \subseteq A \Rightarrow X \setminus A \subseteq X \setminus cl_{\lambda}(A) = int_{\lambda}(X \setminus A)$ $\Rightarrow X \setminus A \in O^{\lambda}(X) \Rightarrow A \in C^{\lambda}(\tau).$

Theorem 2.5 Let X be a topological space and $A \subseteq X$. Then, for $A \in C(\tau)$, $A \in C^{ge\Lambda}(\tau)$.

Proof. It follows from the fact that $C(\tau) \subseteq C^{\lambda}(\tau) \subseteq C^{ge\Lambda}(\tau)$.

Theorem 2.6 Let X be a topological space and $U \subseteq X$. Then, for $U \in O(X)$, $U \in C^{ge\Lambda}(\tau)$.

Proof. It follows from the fact that $O(X) \subseteq C^{\lambda}(\tau) \subseteq C^{ge\Lambda}(\tau)$.

Theorem 2.7 Let X be a topological space and $A \subseteq X$. Then, for $A \in C^{ge\Lambda}(\tau)$, $A \in C^{g\Lambda}(\tau)$.

Proof. It follows from the fact that $O(X) \subseteq O^e(X)$.

Corollary 2.8 Let X be a topological space. Then we have the following chains: (a) $O(X) \subseteq O^{\Lambda}(X) \subseteq C^{\lambda}(\tau)$; (b) $C(\tau) \subseteq C^{\lambda}(\tau) \subseteq C^{ge\Lambda}(\tau) \subseteq C^{g\Lambda}(\tau)$.

Remark 1 From Definitions 1.4, 2.1 and Example 2.3 we have the following diagram. However, none of the above implications is reversible as shown in the relevant articles.

 $\begin{array}{ccc} \text{closed} & \to & \lambda\text{-closed} & \to ge\Lambda\text{-closed} \\ & \downarrow & & \\ g^*\text{-closed} & \to & g\text{-closed} & \leftarrow & gg\text{-closed} & & \\ & \uparrow & & \downarrow & \swarrow \\ \Lambda g\text{-closed} & \to & g\Lambda\text{-closed} & \leftarrow & gb\Lambda\text{-closed} & \\ \end{array}$

Question Are the concepts $gb\Lambda$ -closeness and $ge\Lambda$ -closeness independent of each other?

Definition 2.9 [11] A partition topology is a topology which can be induced on any set X by partitioning X into disjoint subsets P, these subsets form the basis for the topology.

Lemma 2.10 [11, 16] Let X be a topological space. Then

- (1) X is a partition space if and only if $O(X) \subseteq C(\tau)$.
- (2) For a partition space X, $cl(A) = cl_{\lambda}(A)$, where $A \subseteq X$.

Theorem 2.11 Let X be a partition space. Then $C^{ge\Lambda}(\tau) \subseteq C^{\omega}(\tau)$.

Proof. Let $A \in C^{ge\Lambda}(\tau)$, $A \subseteq X$ and $U \in O^S(X)$.

$$\begin{array}{l} (A \subseteq X)(U \in O^{S}(X)) \Rightarrow (A \subseteq X)(U \in O^{e}(X)) \\ A \in C^{ge\Lambda}(\tau) \end{array} \right\} \underset{X \text{ is partition}}{\Rightarrow} d_{\lambda}(A) \subseteq U \\ \Rightarrow cl(A) \subseteq U \Rightarrow A \in C^{\omega}(\tau). \end{array}$$

Theorem 2.12 Let X be a topological space and $A \subseteq X$. Then for $A \in C^{ge\Lambda}(\tau)$, $A \in C^{gb\Lambda}(\tau)$, $A \in C^{gs\Lambda}(\tau)$ and $A \in C^{g\Lambda}(\tau)$.

Proof. It follows from the fact that $O(X) \subseteq O^S(X) \subseteq O^B(X) \subseteq O^e(X)$.

3. Applications of *e*-open sets as a kernel

Theorem 3.1 Let X be a topological space and $A \subseteq X$. If $A \in C^{ge\Lambda}(\tau)$, then $F \nsubseteq cl_{\lambda}(A) \setminus A$ where $\emptyset \neq F \in C(\tau)$.

Proof. Let $A \in C^{ge\Lambda}(\tau)$. Suppose that $F \subseteq cl_{\lambda}(A) \setminus A$ where $\emptyset \neq F \in C(\tau)$. $(\emptyset \neq F \in C(\tau))(F \subseteq cl_{\lambda}(A) \setminus A) \Rightarrow (X \setminus F \in O(X) \subseteq eO(X))(A \subseteq X \setminus F)$ $A \in C^{ge\Lambda}(\tau)$ \Rightarrow

$$\Rightarrow cl_{\lambda}(A) \subseteq X \setminus F \Rightarrow F \subseteq X \setminus cl_{\lambda}(A) \\ F \subseteq cl_{\lambda}(A) \setminus A \Rightarrow F \subseteq cl_{\lambda}(A) \\ \end{bmatrix} \Rightarrow F \subseteq (X \setminus cl_{\lambda}(A)) \cap cl_{\lambda}(A) \Rightarrow F = \emptyset.$$

This is a contradiction. Hence, $cl_{\lambda}(A) \setminus A$ does not contain any non-empty closed set.

Theorem 3.2 Let X be a topological space and $A \subseteq X$. If $A \in C^{ge\Lambda}(\tau)$, then $T \nsubseteq$

 $cl_{\lambda}(A) \setminus A$ where $\emptyset \neq T \in C^B(\tau)$.

Proof. It is similar to the proof of Theorem 3.1.

Theorem 3.3 Let X be a topological space and $A \subseteq X$. If $A \in C^{ge\Lambda}(\tau)$, then $T \nsubseteq cl_{\lambda}(A) \setminus A$ where $\emptyset \neq T \in C^{e}(\tau)$.

Proof. It is similar to the proof of Theorem 3.1.

Theorem 3.4 Let X be a topological space. Then for each $x \in X$, either $\{x\} \in C^{e}(\tau)$ or $X \setminus \{x\} \in C^{ge\Lambda}(\tau)$.

Proof. Let $\{x\} \notin C^e(\tau)$. $\{x\} \notin C^e(\tau) \Rightarrow X \setminus \{x\} \in O^e(X)$ $X \setminus \{x\} \subseteq X \in O^e(X)$ Hence, $X \setminus \{x\} \in C^{ge\Lambda}(\tau)$. Thus, $\{x\} \in C^e(\tau)$ or $X \setminus \{x\} \in C^{ge\Lambda}(\tau)$.

Recall that a topological space X is called a Hausdorff (or T_2) space iff for every pair of distinct points x and y, there exist two open sets U and V such that $x \in U, y \in V$ and $U \cap V = \emptyset$. In this context, a topological space X is called a T_1 space iff every singleton set is closed in X. It is obvious that every Hausdorff space is T_1 space.

Theorem 3.5 Let X be a topological space in which each one-point set is closed. Then $C^{\lambda}(\tau) = C^{ge\Lambda}(\tau)$.

Proof. Let $x \in X$, $\{x\} \in C(\tau)$. Suppose that $A \in C^{ge\Lambda}(\tau)$ and $A \notin C^{\lambda}(\tau)$. $(A \in C^{ge\Lambda}(\tau))(A \notin C^{\lambda}(\tau)) \Rightarrow cl_{\lambda}(A) \setminus A \neq \emptyset \Rightarrow \exists x \in cl_{\lambda}(A) \setminus A \\ \{x\} \in C(\tau)\} \Rightarrow$

 $\Rightarrow (\emptyset \neq \{x\} \in C(\tau))(\{x\} \subseteq cl_{\lambda}(A) \setminus A)$ This is a sector disting because of Theorem 2.1

This is a contradiction because of Theorem 3.1. Hence $A \in C^{\lambda}(\tau)$. Therefore, $C^{ge\Lambda}(\tau) \subseteq C^{\lambda}(\tau)$. Moreover $C^{\lambda}(\tau) \subseteq C^{ge\Lambda}(\tau)$. Thus, the result follows.

Corollary 3.6 Let X be a Hausdorff space. Then $C^{\lambda}(\tau) = C^{ge\Lambda}(\tau)$.

Definition 3.7 [13] A topological space X is called a $T_{\frac{1}{2}}$ -space if every generalized closed subset of X is closed.

Proposition 3.8 [2] For a topological space X, the followings are equivalent:

(1) X is a $T_{\underline{1}}$ -space;

(2) Every subset of X is λ -closed.

Theorem 3.9 Let X be a $T_{\frac{1}{2}}$ -space. Then, for each subset A of X, $A \in C^{ge\Lambda}(\tau)$.

Proof. The proof immediately follows from Proposition 3.8 and Theorem 2.2.

Definition 3.10 [2] A topological space X is called a $T_{\frac{1}{4}}$ -space if for every finite subset F of X and every $y \notin F$, there exists a set A_y containing F and disjoint from $\{y\}$ such that A_y is either open or closed.

Proposition 3.11 [2] For a topological space X, the followings are equivalent: (1) X is a $T_{\frac{1}{2}}$ -space;

(2) Every finite subset of X is λ -closed.

Theorem 3.12 Let X be a $T_{\frac{1}{4}}$ -space. Then, for any finite subset A of X, $A \in C^{ge\Lambda}(\tau)$.

Proof. The proof immediately follows from Proposition 3.11 and Theorem 2.2.

Definition 3.13 [8] A topological space X is said to be a door space if every subset of X is either open or closed.

Theorem 3.14 Let X be a door space. Then $C^{ge\Lambda}(\tau) = \mathcal{P}(X)$.

Proof. The proof is obvious from Theorems 2.5 and 2.6.

Theorem 3.15 Let X be a partition space. Then $C^{ge\Lambda}(\tau) = C^g(\tau)$.

Proof. Let $A \in C^{ge\Lambda}(\tau)$, $A \subseteq U$ and $U \in O(X)$.

$$\begin{array}{c} (A \subseteq U)(U \in O(X)) \\ A \in C^{ge\Lambda}(\tau) \end{array} \xrightarrow{\Rightarrow} cl_{\lambda}(A) \subseteq U \\ X \text{ is partition} \end{array} \xrightarrow{\text{Lemma 2.10(b)}} cl(A) \subseteq U \Rightarrow A \in C^{g}(\tau). \\ \text{Moreover, } C^{g}(\tau) \subseteq C^{ge\Lambda}(\tau). \text{ Thus, } C^{ge\Lambda}(\tau) = C^{g}(\tau). \end{array}$$

Theorem 3.16 Let X be a topological space and A be a $ge\Lambda$ -closed subset of X. Then $A \in C^{\lambda}(\tau)$ if and only if $cl_{\lambda}(A) \setminus A \in C(\tau)$.

Proof. Necessity. Let
$$A \in C^{\lambda}(\tau)$$
.
 $A \in C^{\lambda}(\tau) \Rightarrow cl_{\lambda}(A) = A \Rightarrow cl_{\lambda}(A) \setminus A = \emptyset \in C(\tau)$.
Sufficiency. Let $A \in C^{ge\Lambda}(\tau)$ and $cl_{\lambda}(A) \setminus A \in C(\tau)$.
 $A \in C^{ge\Lambda}(\tau) \xrightarrow{Theorem 3.1} (\emptyset \neq F \in C(\tau))(F \nsubseteq cl_{\lambda}(A) \setminus A)$
 $cl_{\lambda}(A) \setminus A \in C(\tau)$
 $\Rightarrow cl_{\lambda}(A) = A \Rightarrow A \in C^{\lambda}(\tau)$.

Theorem 3.17 Let X be a topological space. If $C^{ge\Lambda}(\tau) \subseteq C^{\lambda}(\tau)$, then for each $x \in X$, either $\{x\} \in C^{e}(\tau)$ or $\{x\} \in O^{\lambda}(X)$.

Proof. Let
$$C^{ge\Lambda}(\tau) \subseteq C^{\lambda}(\tau)$$
 and $\{x\} \notin C^{e}(\tau)$.
 $\{x\} \notin C^{e}(\tau) \Rightarrow (X \setminus \{x\} \notin O^{e}(X))(X \setminus \{x\} \subseteq X \in O^{e}(X)) \Rightarrow cl_{\lambda}(X \setminus \{x\}) \subseteq X$
 $\Rightarrow X \setminus \{x\} \in C^{ge\Lambda}(\tau)$
Hypothesis
 $X \setminus \{x\} \in C^{\lambda}(\tau) \Rightarrow \{x\} \in O^{\lambda}(X).$

Therefore, $\{x\}$ is either *e*-closed or λ -open.

Theorem 3.18 [2] Let X be a topological space and $\{A_i | i \in \Lambda\}$ be an arbitrary collection of λ -closed sets. Then $\bigcap A_i \in C^{\lambda}(\tau)$.

Theorem 3.19 Let X be a topological space and $A, F \subseteq X$. Then, for $A \in O^{e}(X) \cap C^{ge\Lambda}(\tau)$ and $F \in C^{\lambda}(\tau), A \cap F \in C^{ge\Lambda}(\tau)$.

Proof. Let
$$A \in O^e(X) \cap C^{ge\Lambda}(\tau)$$
 and $F \in C^{\lambda}(\tau)$.
 $A \in O^e(X) \cap C^{ge\Lambda}(\tau)$
Theorem 2.4 $\Rightarrow A \in C^{\lambda}(\tau)$
 $F \in C^{\lambda}(\tau)$ $\Rightarrow A \cap F \in C^{\lambda}(\tau)$
Theorem 3.18 $A \cap F \in C^{\lambda}(\tau)$
Theorem 2.2 $A \cap F \in C^{ge\Lambda}(\tau)$.

Theorem 3.20 Let X be a topological space and $A \subseteq X$. Then, for $A \in C^{ge\Lambda}(\tau)$, $e\text{-}cl(\{x\}) \cap A \neq \emptyset$ for every $x \in cl_{\lambda}(A)$.

Proof. Let $A \in C^{ge\Lambda}(\tau)$. Suppose that $e \cdot cl(\{x\}) \cap A = \emptyset$ for some $x \in cl_{\lambda}(A)$. $(\exists x \in cl_{\lambda}(A))(e \cdot cl(\{x\}) \cap A = \emptyset) \Rightarrow (A \subseteq X \setminus e \cdot cl(\{x\}))(X \setminus e \cdot cl(\{x\}) \in O^{e}(X)))$ $A \in C^{ge\Lambda}(\tau)$ \Rightarrow

$$\Rightarrow cl_{\lambda}(A) \subseteq X \setminus e - cl(\{x\}) \\ x \in cl_{\lambda}(A) \end{cases} \Rightarrow x \notin e - cl(\{x\}).$$

This is a contradiction. Hence, $e - cl(\{x\}) \cap A \neq \emptyset$ for every $x \in cl_{\lambda}(A)$.

Theorem 3.21 For a topological space X, the following statements are equivalent: (1) $O^e(X) \subseteq C^{\lambda}(\tau)$; (2) $\mathcal{P}(X) \subseteq C^{ge\Lambda}(\tau)$.

Proof. (1)
$$\Rightarrow$$
 (2) : Let $A \subseteq X$ and $A \subseteq U$, where $U \in O^e(X)$.
 $(A \subseteq X)(A \subseteq U) \xrightarrow{\text{Lemma 1.7(5)}} cl_{\lambda}(A) \subseteq cl_{\lambda}(U)$
 $U \in O^e(X) \xrightarrow{\text{Hypothesis}} U \in C^{\lambda}(\tau) \xrightarrow{\text{Lemma 1.7(1)}} U = cl_{\lambda}(U)$
 $\Rightarrow A \in C^{ge\Lambda}(\tau).$
(2) \Rightarrow (1) : Let $A \in O^e(X)$.
 $A \in O^e(X) \Rightarrow A \in \mathcal{P}(X)$
Hypothesis $\Rightarrow A \in C^{ge\Lambda}(\tau) \xrightarrow{\text{Theorem 2.2}} A \in C^{\lambda}(\tau).$

Theorem 3.22 Let X be a topological space. Let $A, B \in C^{ge\Lambda}(\tau)$ with $D(A) \subseteq D_{\lambda}(A)$ and $D(B) \subseteq D_{\lambda}(B)$. Then $A \cup B \in C^{ge\Lambda}(\tau)$.

Proof. Let
$$A \cup B \subseteq U$$
 where $U \in O^e(X)$ and let $D(A) \subseteq D_\lambda(A)$ and $D(B) \subseteq D_\lambda(B)$.
 $(D(A) \subseteq D_\lambda(A))(D(B) \subseteq D_\lambda(B))$
Lemma 1.9(1) $\} \Rightarrow (D(A) = D_\lambda(A))(D(B) = D_\lambda(B))$
 $cl(A) = A \cup D(A) \} \Rightarrow$
Lemma 1.9(2) $(cl(A) = A \cup D_\lambda(A) = cl_\lambda(A))(cl(B) = B \cup D_\lambda(B) = cl_\lambda(B)) \dots (*)$
 $(A \cup B \subseteq U)(U \in O^e(X)) \Rightarrow (A \subseteq U)(B \subseteq U)(U \in O^e(X))$
 $A, B \in C^{ge\Lambda}(\tau) \} \Rightarrow$
 $\Rightarrow cl_\lambda(A \cup B) \stackrel{\text{Lemma 1.7(4)}}{\subseteq} cl(A \cup B) = cl(A) \cup cl(B) \stackrel{(*)}{=} cl_\lambda(A) \cup cl_\lambda(B) \subseteq U.$

The following theorem is a characterization of $ge\Lambda$ -closed sets.

Theorem 3.23 Let X be a topological space and $A \subseteq X$. Then $A \in C^{ge\Lambda}(\tau)$ if and only if $cl_{\lambda}(A) \subseteq Ker_{e}(A)$.

Proof. Necessity. Let $A \in C^{ge\Lambda}(\tau)$. Suppose that $x \in cl_{\lambda}(A)$ but $x \notin Ker_e(A)$. $x \notin Ker_e(A) \xrightarrow{\text{Lemma 1.2}} (\exists E \in O^e(X))(A \subseteq E)(x \notin E)$ $A \in C^{ge\Lambda}(\tau) \end{cases} \Rightarrow cl_{\lambda}(A) \subseteq E.$

This is a contradiction. Hence, $cl_{\lambda}(A) \subseteq Ker_{e}(A)$. Sufficiency. Let $A \subseteq X$, $cl_{\lambda}(A) \subseteq Ker_{e}(A)$ and $A \subseteq U$ where $U \in O^{e}(X)$. $(A \subseteq U)(U \in O^{e}(X)) \Rightarrow Ker_{e}(A) \subseteq U$ $cl_{\lambda}(A) \subseteq Ker_{e}(A)$ $\Rightarrow cl_{\lambda}(A) \subseteq U$.

Theorem 3.24 Let X be a topological space. Let $A, B \subseteq X$ such that $A \in C^{ge\Lambda}(\tau)$ and $A \subseteq B \subseteq cl_{\lambda}(A)$. Then $B \in C^{ge\Lambda}(\tau)$.

Proof. Let $B \subseteq U$ where $U \in O^e(X)$ and let $A \in C^{ge\Lambda}(\tau)$ and $A \subseteq B \subseteq cl_\lambda(A)$.

$$(B \subseteq U)(U \in O^{e}(X))(A \subseteq B \subseteq cl_{\lambda}(A)) \Rightarrow (A \subseteq U)(U \in O^{e}(X)) \\ A \in C^{ge\Lambda}(\tau) \} \Rightarrow$$

$$\Rightarrow cl_{\lambda}(A) \subseteq U \dots (*)$$

$$A \subseteq B \subseteq cl_{\lambda}(A) \stackrel{\text{Lemma 1.7}}{\Rightarrow} cl_{\lambda}(B) \subseteq cl_{\lambda} (cl_{\lambda}(A)) = cl_{\lambda}(A) \stackrel{(*)}{\subseteq} U.$$

4. Complement of $ge\Lambda$ -closed sets

Definition 4.1 Let X be a topological space. A is called $ge\Lambda$ -open if $X \setminus A$ is $ge\Lambda$ -closed set. Equivalently, a subset A of X is said to be $ge\Lambda$ -open if $F \subseteq int_{\lambda}(A)$, whenever $F \subseteq A$ and $F \in C^{e}(\tau)$.

The collection of all $ge\Lambda$ -open sets of X is denoted by $O^{ge\Lambda}(X)$.

Theorem 4.2 Let X be a topological space and $A \subseteq X$. Then $A \in O^{ge\Lambda}(X)$ if and only if $F \subseteq int_{\lambda}(A)$ whenever $F \subseteq A$ and $F \in C^{e}(\tau)$.

Proof. Necessity. Let
$$A \in O^{ge\Lambda}(X)$$
 and let $F \subseteq A$ and $F \in C^e(\tau)$.
 $(F \subseteq A)(F \in C^e(\tau)) \Rightarrow (X \setminus A \subseteq X \setminus F)(X \setminus F \in O^e(X))$
 $A \in O^{ge\Lambda}(X) \Rightarrow X \setminus A \in C^{ge\Lambda}(\tau) \} \Rightarrow$
 $\Rightarrow cl_\lambda(X \setminus A) \subseteq X \setminus F$
 $\Rightarrow F \subseteq X \setminus cl_\lambda(X \setminus A) = int_\lambda(A).$
Sufficiency. Let $F \subseteq int_\lambda(A)$ where $F \subseteq A$ and $F \in C^e(\tau).$
 $(F \subseteq A)(F \in C^e(\tau)) \Rightarrow (X \setminus A \subseteq X \setminus F)(X \setminus F \in O^e(X))$
Hypothesis $\} \Rightarrow$
 $\Rightarrow cl_\lambda(X \setminus A) = X \setminus int_\lambda(A) \subseteq X \setminus F \Rightarrow X \setminus A \in C^{ge\Lambda}(\tau) \Rightarrow A \in O^{ge\Lambda}(X).$

Theorem 4.3 Let X be a topological space. Then $O^{\lambda}(X) \subseteq O^{ge\Lambda}(X)$.

Proof. It is obvious from Theorem 2.2.

Theorem 4.4 Let X be a topological space. Then $O(X) \subseteq O^{ge\Lambda}(X)$.

Proof. Follows from the fact that $C(\tau) \subseteq C^{\lambda}(\tau)$ and Theorem 2.2.

Theorem 4.5 Let X be a topological space. Then $C(\tau) \subseteq O^{ge\Lambda}(X)$.

Proof. Follows from the fact that $O(X) \subseteq C^{\lambda}(\tau) \subseteq C^{ge\Lambda}(\tau)$.

Theorem 4.6 Let X be a topological space and $A \subseteq X$. If $A \in C^{e}(\tau) \cap O^{ge\Lambda}(X)$, then $A \in O^{\lambda}(X)$.

Proof. It is obvious from Theorem 2.4.

Theorem 4.7 Let X be a topological space and $A \in O^{ge\Lambda}(X)$. If $int_{\lambda}(A) \subseteq B \subseteq A$, then $B \in O^{ge\Lambda}(X)$.

Proof. Let $A \in O^{ge\Lambda}(X)$ and $int_{\lambda}(A) \subseteq B \subseteq A$. $int_{\lambda}(A) \subseteq B \subseteq A \Rightarrow X \setminus A \subseteq X \setminus B \subseteq X \setminus int_{\lambda}(A)$ $A \in O^{ge\Lambda}(X) \Rightarrow X \setminus A \in C^{ge\Lambda}(\tau)$ $\Rightarrow X \setminus B \in C^{ge\Lambda}(\tau) \Rightarrow B \in O^{ge\Lambda}(X).$ Theorem 3.24

Theorem 4.8 Let X be a topological space. If $A \in O^{ge\Lambda}(X)$ and $G \in O^e(X)$ with $int_{\lambda}(A) \cup (X \setminus A) \subseteq G$, then G = X.

Proof. Let $A \in O^{ge\Lambda}(X)$ and $G \in O^e(X)$ with $int_{\lambda}(A) \cup (X \setminus A) \subseteq G$.

$$\begin{split} ∫_{\lambda}(A) \cup (X \setminus A) \subseteq G \Rightarrow X \setminus G \subseteq (X \setminus int_{\lambda}(A)) \cap A = cl_{\lambda}(X \setminus A) \setminus X \setminus A \\ & (A \in O^{ge\Lambda}(X) \Rightarrow X \setminus A \in C^{ge\Lambda}(\tau))(G \in O^{e}(X) \Rightarrow X \setminus G \in C^{e}(\tau)) \\ & \stackrel{\text{Theorem 3.3}}{\Rightarrow} X \setminus G = \emptyset \Rightarrow X = G. \end{split}$$

Theorem 4.9 Let X be a topological space and $A \subseteq X$. If $A \in C^{ge\Lambda}(\tau)$, then $cl_{\lambda}(A) \setminus A \in O^{ge\Lambda}(X)$.

Proof. Let
$$A \in C^{ge\Lambda}(\tau)$$
 and let $F \subseteq cl_{\lambda}(A) \setminus A$ where $F \in C^{e}(\tau)$.
 $(F \subseteq cl_{\lambda}(A) \setminus A)(F \in C^{e}(\tau))$
 $A \in C^{ge\Lambda}(\tau)$
 $\xrightarrow{\text{Theorem 3.3}} F = \emptyset \subseteq int_{\lambda}(cl_{\lambda}(A) \setminus A).$

Theorem 4.10 Let X be a door space. Then $\mathcal{P}(X) \subseteq O^{ge\Lambda}(X)$.

Proof. Let A be a subset of a door space X.

$$\begin{array}{c} A \subseteq X \\ X \text{ is door} \end{array} \right\} \Rightarrow (A \in O(X)) \lor (A \in C(\tau)) \xrightarrow{\text{Theorem 4.4 or 4.5}} A \in O^{ge\Lambda}(X).$$

Acknowledgments

This study was supported by Turkish-German University Scientific Research Projects Commission under the grant no: 2021BR01. I would like to thank to Professor Dr. Murad Özkoç for his valuable suggestions and comments that improved this study.

References

- [1] D. Andrijević, On b-open sets, Mat. Vesnik. 48 (1996), 59-64.
- [2] F. G. Arenas, J. Dontchev, M. Ganster, On λ -sets and the dual of generalized continuity, Questions Answers Gen. Topology. 15 (1) (1997), 3-13.
- [3] P. Bhattacharyya, B. K. Lahiri, On semi-generalized closed sets in topology, Indian J. Math. 29 (3) (1987), 375-382.
- [4] M. Caldas, S. Jafari, On some low separation axioms via λ -open and λ -closure operator, Rend. Circ. Mat. Palermo. 54 (2) (2005), 195-208.
- [5] M. Caldas, S. Jafari, G. Navalagi, More on λ-closed sets in topological spaces, Rev. Colombiana Mat. 41 (2) (2007), 355-369.
- M. Caldas, S. Jafari, T. Noiri, On Λ-generalized closed sets in topological spaces, Acta. Math. Hungar. 118 (4) (2008), 337-343.
- [7] M. Caldas, S. Jafari, T. Noiri, On Λ_b -sets and the associated topology τ^{Λ_b} , Acta. Math. Hungar. 110 (4) (2006), 337-345.
- [8] J. Dontchev, On door spaces, Indian J. Pure Appl. Math. 26 (9) (1995), 873-881.
- [9] E. Ekici, On e-open sets, DP*-sets and DPE*-sets and decompositions of continuity, Arabian J. Sci. Eng. 33 (2A) (2008), 269-282.
- [10] E. Ekici, On *R*-spaces, Int. J. Pure App. Math. 25 (2) (2005), 163-172.
- [11] V. Iyer, K. Shrivastava, Characterizations of a partition topology on a set, Int. J. Pure Appl. Math. 74 (3) (2012), 313-320.
- [12] M. K. R. S. VeeraKumar, g*-closed sets in topological spaces, Mem. Fac. Sci. Kochi Univ. Math. 21 (2000), 1-19.
- [13] N. Levine, Generalized closed sets in topology, Rend. Circ. Mat. Palermo. 19 (2) (1970), 89-96.
- [14] N. Levine, Semi-open sets and semi-continuity in topological spaces, Amer. Math. Monthly. 70 (1963), 36-41.
 [15] H. Maki, Generalized Λ-sets and the associated closure operator, The Special Issue in Commemoration of Prof. Kazusada IKEDAs Retirement. (1986), 139-146.
- [16] S. P. Missier, V. H. Raj, gsΛ-closed sets in topological spaces, Int. J. Gen. Topology, 5 (2012), 33-44.
- [17] S. Modak, J. Hoque, Mathematical structures via b-open sets, Trans. A. Razmadze Math. Ins. 176 (1) (2022),
- 73-81. [18] M. Özkoç, B. S. Ayhan, On Λ_e -sets and V_e -sets and the associated topology τ^{Λ_e} , Gen. Math. Notes. 32 (1) (2016), 1-11.
- [19] M. H. Stone, Applications of the theory of Boolean rings to general topology, Trans. Amer. Math. Soc. 41 (1937), 375-381.
- [20] P. Sundaram, M. S. John, On ω -closed sets in topology, Acta. Ciencia. Indica Math. 26 (4) (2000), 389-392.
- [21] N. V. Veličko, H-closed topological spaces, Amer. Math. Soc. Trans. 78 (2) (1968), 103-118.