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Master Thesis:  

Investigating the Effects of Post-mold Cure on 
Warpage in Electronic Packaging Processes 

Background: 

▪ Epoxy molding compounds (EMC) are commonly used thermosetting materials 
for producing molded encapsulants in electronic packaging industry. 

▪ Post-mold cure (PMC) is a process in which the molded thermosetting parts are 
exposed to elevated temperatures again after their molding processes to reach 
higher cross-linking densities to ensure improved material properties. In addition 
to altering thermal and mechanical properties, part warpage is also affected by 
PMC process. Despite the alleviating effects on warpage, the PMC operations 
in industry are mostly conducted with the same parameters (~175 °C & ~4 h) 
with the main goal of reaching increased cross-linking densities without major 
considerations on warpage. Therefore, the effects of varying PMC parameters 
on resultant part warpage are not well-known. 

▪ Due to reactive EMC nature and property deviations in between different batch 
deliveries from the manufacturers, it is always a challenging task to adjust 
process parameters for EMC materials via simulations and analytical methods. 
Therefore, there is a need for alternative ways to adjust and optimize process 
parameters. 

Goals of the Thesis: 

▪ Conducting literature research regarding electronic packaging reliability, 
warpage, and cure mechanisms that can be related to warpage, as well as the 
state of the art for machine learning concepts. 

▪ Experimentally investigating the warpage reduction mechanisms that take place 
during PMC processes, acquiring process data from the experiments and 
correlating the resultant warpage with the PMC parameters used. 

▪ Creating a data driven model with the experimental data to optimize the PMC 
parameters considering the resultant warpage as the main quality criterion. 
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Abstract 

In electronic packaging industry, post-mold cure is a commonly applied process in 

which the molded thermosetting encapsulants are exposed to elevated temperatures 

again for several hours after their molding operations to ensure improved material 

properties via reaching higher cross-linking densities. Some studies in literature and 

industrial applications showed that it is also a useful method to alleviate the package 

warpage, which is a major quality criterion. Despite these findings, the effects of 

different post-mold cure parameters on resultant warpage are still not well-known since 

it is mostly conducted with the same parameters in industry only to reach higher 

cross-linking densities without the considerations on warpage.  

In this study, the effects of post-mold cure process on warpage of an epoxy molding 

compound encapsulant are investigated. Material characterization tests are performed 

to investigate the thermal and cure behaviors of encapsulant components. 

Experiments with varying post-mold cure temperatures and times are conducted to 

correlate these parameters with the resultant warpage to create a process knowledge. 

Part warpages are evaluated via 3D optical profilometer scans, and infrared spectra of 

the samples are measured to non-destructively detect the alterations in chemical 

composition as an indicator of changing cross-linking density. In the light of the 

experiments, the warpage reduction mechanism during post-mold cure is explained, 

which is related to thermal and cure shrinkages, as well as the glass transition 

behaviors of the materials. Moreover, utilizing the acquired experimental data, a 

machine learning algorithm is proposed which predicts the optimal post-mold cure 

parameters in accordance with the desired warpage and cross-linking density values 

after the operation. The algorithm was able to accurately predict the resultant warpage 

for test samples and the predicted optimal post-mold cure parameters showed an 

accordance with the experiments. 

Both experiment results and algorithm predictions showed that the post-mold cure time 

can be reduced to ~15 minutes from several hours when warpage is considered as the 

main quality criterion to optimize for the materials and the geometry tested in the 

experiments. 

 

 

 

 

 



 

Zusammenfassung  

Post-mold Cure ist ein häufig angewandtes Verfahren im Bereich Electronic 

Packaging, bei dem duromere Teile nach der Formgebung erneut erhöhten 

Temperaturen ausgesetzt werden, um eine höhere Vernetzungsdichte und damit 

bessere Materialeigenschaften zu erreichen. Bisherige Studien und industrielle 

Anwendungen haben gezeigt, dass der Post-mold Cure auch eine nützliche Methode 

ist, um den Verwölbung der Verkapselung, der ein wichtiges Qualitätskriterium ist, zu 

verringern. Trotz dieser Erkenntnisse sind die Auswirkungen verschiedener Post-mold 

Cure Parameter auf die resultierende Verwölbung noch immer nicht genau bekannt, 

da der Post-mold Cure meist mit denselben Parametern durchgeführt wird. Das Ziel ist 

hierbei eine möglichst hohe Vernetzungsdichte zu erreichen, ohne die Verwölbung 

genau zu berücksichtigen. 

In dieser Arbeit werden die Auswirkungen des Post-mold Cures auf die Verwölbung 

der verwendeten Prüfkörper untersucht. Materialcharakterisierungstests werden 

durchgeführt, um das Wärme- und Aushärtungsverhalten der Materialen zu 

untersuchen. Experimente mit unterschiedlichen Post-mold Cure Temperaturen und 

Zeiten werden durchgeführt, um diese Parameter mit der resultierenden Verwölbung 

zu korrelieren und ein Prozesswissen zu generieren. Die Verwölbung der Prüfkörper 

wird durch optische 3D-Profilometerscans bewertet. Es werden außerdem 

Infrarotspektren der Materialien gemessen, um die Veränderungen der chemischen 

Zusammensetzung des Epoxidharzes während des Post-Mold Cures als Indikator für 

Änderungen in der Vernetzungsdichte zu verwenden. Anhand der Experimente wird 

der Mechanismus zur Verringerung der Verwölbung während des Post-mold Cures 

erklärt und mit der thermischen und chemischen Schrumpfung, sowie dem 

Glasübergangsverhalten der Materialien in Verbindung gebracht. Darüber hinaus 

werden die gewonnenen experimentellen Daten verwendet, um einen Machine 

Learning Algorithmus aufzusetzen, der die optimalen Post-mold Cure Parameter 

vorhersagt, die am Ende die gewünschte Verwölbung und Vernetzungsdichte ergeben. 

Mit Hilfe des Machine Learning Algorithmus ist es möglich, die resultierende 

Verwölbung und die möglichst optimalen Post-mold Cure Parameter für die 

Testproben vorherzusagen. 

Die experimentellen Ergebnisse und die Vorhersagen des Machine Learning Modells 

zeigen, dass die Post-mold Cure Zeit für die getesteten Materialien und Geometrien 

auf ~15 Minuten reduziert werden kann, wenn der Verzug als wichtigstes 

Qualitätskriterium für die Optimierung betrachtet wird. 
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1 Introduction 

Semiconductors are employed in a very broad range of industrial applications varying 

from consumer electronics and home appliances with low costs and high production 

volumes; to automotive, military and aerospace industries with longer life cycles and 

harsh working conditions [1,2]. Semiconductor encapsulation is an important step in 

electronics production which directly affects the final quality of the electronic system in 

terms of integrity and safety against environmental damages [2,3]. Molding has been 

a dominant method for high volume polymer encapsulated electronic package 

production [4]. Epoxy molding compounds (EMCs) are the most commonly used 

polymer encapsulation materials today with their good thermal stabilities and matching 

properties for molding processes [5]. Since a high cross-linking density in 

thermosetting EMC is required for good thermal stability of an encapsulant, post-mold 

cure (PMC) is a common process that is applied to electronic packages, in which they 

are exposed to elevated temperatures again for elongated times after their molding 

operations since reaching high chemical conversion levels is not always possible 

during molding itself due to long mold times needed and economic constraints [6,7].  

During molding, several defects might occur in the package such as warpage, 

delamination, voids and polymer cracks [8]. Warpage is a major defect in molded 

encapsulants, in which the part loses its planarity mostly due to thermal mismatch in 

between the encapsulant material and other components in the package [8,9]. Even 

though the selected materials and molding parameters are the key factors to avoid 

warpage formation, post-mold cure is also a common way to alleviate the 

manufacturing induced warpage in electronic packages [10,11]. Despite being a 

common process, the optimal PMC parameters are still a field of study that is open to 

improvements. Since its main purpose is reaching higher cross-linking densities to 

ensure improved mechanical properties of the encapsulant, the common practice in 

industry is to post-mold cure the parts for long times up to 16 hours at elevated 

temperatures close to their mold temperatures [12]. Considering warpage as the main 

quality criterion, the effects of different PMC parameters on resultant warpage are not 

well-known. 

Due to time dependent properties of EMCs, it is always a challenge to analytically 

model or simulate their behavior. Despite the huge annual production volume, the 
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parameters for EMC encapsulation processes are still mostly arranged via trial and 

error manners [13]. Due to alterations in raw material properties during storage, every 

batch of products might have different quality levels even though they are produced 

with the same parameters. In addition to these storage related alterations, every 

material batch delivered in different times from the same manufacturer might have 

slightly differing material properties which makes the parameter adjustment step even 

more challenging [5]. These difficulties make the process simulations and analytical 

studies very costly and time consuming for industrial uses since they need to be 

repeated every time. Therefore, there is a search for alternative methods to optimize 

mass production of electronic packages. For such purposes, data driven methods are 

proven to be useful such as the machine learning method, which is the study of 

statistical algorithms that has been a mainstay in information technologies and 

successfully employed for industrial optimization purposes as well [14,15]. Due to its 

capabilities on creating data driven prediction models which are applicable to product 

and production optimization, there is an increasing trend for machine learning usage 

in industry [15]. Such methods are successfully applied to injection molding processes 

with polymers and can be utilized for other processes with different approaches [16]. 

In this master thesis, the effects of different post-mold cure parameters on warpage of 

an EMC encapsulated package are investigated. Molded parts are post-mold cured 

with different parameters and their warpage values before and after PMC operations 

are compared. Similarly, infrared spectra of the samples are measured to correlate the 

alterations in the chemical composition of EMC during PMC with the changes in cross-

linking density. With the goal of optimizing the PMC parameters considering warpage 

as the main quality criterion, a machine learning based optimization algorithm is built 

via the results acquired from the experiments.  

Starting with an overview of the state of the art in Chapter 2, the materials and the 

methods used for the experimental work are introduced in Chapter 3, as well as the 

description of the developed machine learning algorithm. The acquired results are then 

presented in Chapter 4, followed by the conclusion and outlook of the work in 

Chapter 5. 
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2 State of the Art 

This chapter introduces two important concepts regarding the thesis, namely electronic 

packaging, and machine learning. Starting with the state of the art for electronic 

packaging and summarizing its challenges in Chapter 2.1, the encapsulant materials 

used in electronic packaging are introduced in Chapter 2.1.1. Being the material used 

in the experiments, detailed composition and property details of epoxy molding 

compounds are given afterwards in Chapter 2.1.2. Common encapsulation methods 

are introduced in Chapter 2.1.3, followed by the description of overall quality criteria in 

polymer encapsulated electronic packages. The main focuses of the thesis, the 

warpage issue in electronic packages and the post-mold cure process are described 

in Chapters 2.1.5 and 2.1.6 respectively. Following these, in Chapter 2.2, the machine 

learning concept is explained which is one of the most trending topics in a large variety 

of industrial applications including electronic packaging [17,18]. After the concept 

introduction and historical overview, different algorithm types are presented in 

Chapter 2.2.1. Being a main concern, the model validation phase is described in 2.2.2. 

After these introductory parts to machine learning, two algorithms Partial Least 

Squares Regression and Artificial Neural Networks are introduced in Chapters 2.2.3 

and 2.2.4 respectively. Finally, these two main sub-chapters are summarized, and the 

motivation of the thesis is presented in Chapter 2.3. 

2.1 Electronic Packaging 

With the most simple approach, an electronic package is an encapsulant which houses 

electronic elements such as transistors, chips, resistors and capacitors to protect them 

from environmental damages and provide their interconnections in between each other 

and other electronic systems [19]. The encapsulant protects the package content 

against corrosives, mechanical and thermal shocks, vibration and damages during 

transportation, storage and usage [3]. As electronics are highly involved in daily life 

and all branches of industry, electronic packages are used in a very broad product 

spectrum varying from the low cost and high volume products in consumer electronics 

such as cell phones, computers and home appliances that work in relatively benign 

environments; to the products working under harsh conditions with high life cycles such 

as the products used in automotive and aerospace industries [1]. Figure 2.1 shows 

the cross-section of an encapsulated Integrated Circuit (IC) chip which is a basis 
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element used in many electronic products. The functional elements such as the silicon 

IC chip, the wires that connect the encapsulated elements, and the lead-frame for outer 

connections of the package are assembled and protected via the encapsulant [19].  

 

Figure 2.1: Cross-section of an encapsulated IC chip [19] 

Before encapsulation, the initial step is generally the chip or the wafer level component 

[20]. An example regarding the encapsulation of an IC chip is shown in Figure 2.2. 

The silicon IC chip is cut out from the wafer using a diamond blade and then attached 

to a lead-frame using an adhesive. In some applications, printed circuit board (PCB) 

substrates can also be used instead of lead-frames to mount chips and sensors [21]. 

After the connection of conductive wires to the lead-frame, the components are 

encapsulated with a polymer material [20]. After the encapsulation, the excessive 

lead-frame parts are trimmed and formed into their final geometries that is required for 

further integration to other electronic assemblies [20,22]. 

 

Figure 2.2: Cutting and encapsulation processes of an IC chip [20] 

Integrating multiple electronic packages, electronic systems are built as shown in 

Figure 2.3. Starting from the IC chip as the zero level, the first level consists of the 

encapsulation and interconnection of the chip and other conductive elements. The 

Plastic 
encapsulant 

Silicon chip 
Wire 

Lead-frame 

Die attach 
adhesive 

Die attach 
paddle 
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assembly in which multiple first level packages are connected to a printed circuit board 

(PCB) is called the second level package. Further connections of multiple packages 

create more complex assemblies that form electronic systems in the end. [19] 

 

Figure 2.3: Different levels of electronic packages [19] 

Depending on the product use cases, other materials such as glass, ceramics or 

metals can also be used with different encapsulation methods in accordance with the 

required properties for the package working conditions [23]. The selection of proper 

materials and manufacturing methods is a major aspect that directly affects the final 

product reliability [24].  

2.1.1 Encapsulant Materials Used in Electronic Packaging 

Apart from the major concern of housing and protecting the elements from the 

environmental effects, functionality and safety of an electronic system are also 

amongst the main duties of an encapsulant [19]. The package must withstand certain 

physical, thermal, and electrical loads. Especially in power electronics applications, the 

package is exposed to extreme thermal and electrical load conditions which makes it 

even more important to have a sound encapsulant against these loads [25]. With 

regard to these operational conditions, it is needed to satisfy some limits in certain 

material properties of encapsulant such as coefficient of thermal expansion, thermal 

conductivity, mechanical strength or dielectric constant [26]. Combining these quality 

related issues with economic aspects, material selection step requires variety of 

considerations to have a balance in between the function, cost, reliability and 
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processability. All these mentioned concerns make electronic packaging one of the 

most materials-intensive industrial applications today [27]. 

The materials used for encapsulation of electronic packages can be divided into three 

main types as metal-based, ceramic-based and polymer-based materials [26]. The 

terms hermetic (for metal and ceramic-based encapsulants) and non-hermetic (for 

polymer-based encapsulants) are also commonly used in literature [22]. The usage of 

polymer-based materials makes up to 90 % of the encapsulation applications in 

electronic systems with their advantages in cost, design flexibility, and lightweight [5]. 

Focusing only on microelectronics, the usage ratio of polymer-based encapsulation 

materials goes up to 99 % due to the process allowances of polymers [22]. Even in 

military industry, the metal and ceramic based high performance materials are being 

replaced with commercial off-the-shelf polymer materials in the recent years [22].  

Polymer-based encapsulant materials consist of polymers and filler materials that 

combine the advantages of polymers in terms of processability and their lightweights, 

and the required properties of the filler materials such as thermal stability and electrical 

conductivity [26]. Epoxy molding compounds (EMCs) are the most commonly used 

compound polymers in electronic packaging applications. Apart from epoxies; 

silicones, polyurethanes and phenolics are also commonly employed as base 

materials [19,26]. Being the main material focused on in this thesis, the composition 

details and properties of EMCs are described in more detail in the following chapter. 

2.1.2 Epoxy Molding Compounds 

Epoxy molding compounds are the most common thermosetting materials for 

semiconductor encapsulation processes with their advantageous properties in terms 

of moldability, mechanical strength, thermo-mechanical matching with other elements 

in the package, small thermal shrinkage, and good moisture resistance. Their thermal 

stabilities in their cured states makes them favorable for electronic products that work 

under elevated temperatures. [5]  

A variety of ingredients are included in an EMC composition to satisfy the required 

mechanical, thermal and chemical properties, as well as the desired processability for 

molding processes. Some examples to these ingredients are epoxy and hardener 
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resins, silica fillers and coupling agents [28]. A typical composition of an EMC material 

is illustrated in Figure 2.4.  

 

Figure 2.4: EMC composition with simplified list of ingredients – adapted from [28]  

As they are named after, EMCs are epoxy resin based materials, which makes them 

well-balanced for molding applications [28]. Epoxy resins have high adhesion strength, 

low shrinkage rate and good chemical and moisture resistances [28]. In addition; their 

low melt viscosity, low curing temperature and short curing time make them really 

well-fitting for molding processes for mass production [28]. Epoxy resins require 

hardeners to start their cross-linking reactions for further curing. At elevated reaction 

temperatures, epoxy resin and hardener transforms into a densely cross-linked three 

dimensional network [29]. Phenol novolac resins are commonly employed as 

hardeners in EMC composition due to their performance on heat and moisture 

resistance, curing properties, and storage stabilities [2]. Chapter 2.1.6 describes the 

changes in material properties during curing in more detail. 

A large amount of silica fillers are used to ensure a lower coefficient of thermal 

expansion (CTE), as well as a lower moisture absorption of the EMC [2]. They are also 

known for increasing the elastic modulus and decreasing the chemical shrinkage 

during curing [5,30]. Being able to decrease the thermal and chemical shrinkage, the 

amount of filler particles has a direct effect on part warpage as shown by Kiong et al 

[31]. Apart from the favorable aspects, the increasing amount of particles lead to an 

increase in the flow viscosity of the EMC, which decreases the moldability and 

promotes additional failures such as wire sweep, which is an encapsulation defect that 

is described in Chapter 2.1.4 [5,32]. Coupling agent is used to accelerate the 

interaction in between the epoxy resin and the filler silica particles [33]. 

When producing molded parts with EMCs, the cycle times for molding are kept as short 

as possible due to economic concerns. Thus, a close to full cross-linking density of the 

material is not reached during molding process [6]. It is well known from the industrial 

~ 70-90 % Silica filler (SiO2) 

~ 5-10 % Epoxy resin 

~ 5 % Hardener resin 

Coupling agent 
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experience that the EMCs have insufficient thermal stability in low chemical conversion 

levels, therefore the molded parts cannot be efficiently used in high temperature 

applications. To achieve increased mechanical properties and thermal stability, there 

is a need for the post-mold cure process which will be discussed in more detail in 

chapter 2.1.6. [7] 

Due to time dependent mechanical and viscous properties of EMCs, it is a complicated 

task to analytically model and simulate their behavior. The parameter sets for EMC 

encapsulation methods are still mostly arranged in trial and error manners due to this 

complexity [13]. In addition, the reactive nature of epoxy resins may cause alterations 

in EMC properties during the storage of the raw material [34]. Another major problem 

that is faced in the industry is the inevitable deviations in material properties in between 

different batches of materials provided by the manufacturers [5]. Considering all these 

aspects, it is still a challenge to optimize EMC encapsulation processes despite being 

the most common material for such purposes [5]. 

2.1.3 Encapsulation Methods  

Encapsulation process technologies for electronic packages can be divided into five 

main groups as molding, glob topping, potting, underfilling and printing as shown in 

Figure 2.5. The selection of the proper method is dependent on different parameters 

such as required cycle time, production volume, used material and package type [35]. 

For simplicity, the focus on this chapter is kept on the encapsulation methods for the 

EMCs. 

 

Figure 2.5: Encapsulation process technologies [35] 
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Since polymers are relatively cheap and easy to process in comparison to other 

encapsulant materials, they have been used for products with huge production 

volumes. Molding EMCs to encapsulate the semiconductors has been a dominant 

method and as a result, a relatively large know-how on this area is created according 

to specialized requirements of each application. [4] 

In the earliest applications of EMC encapsulation, compression-molding was used in 

which the molding compound is heated and compressed inside a cavity [22]. 

Figure 2.6 shows a process schematic for compression molding of a multichip module. 

In comparison to other molding methods, compression molding has the ease of die 

design, allowances of larger mold sizes and simple material flow paths leading to less 

issues which made it a favorable method [36]. On the other hand, high process and 

capital costs prevent compression-molding from being used in high volume mass 

encapsulation processes [36].  

 

Figure 2.6: Compression molding of a multichip module package - adapted from [35] 

Being initially developed for thermoplastic materials, injection molding can also be 

used for thermosetting materials with some modifications in the process. It is a faster 

method for mass production of encapsulants with the allowance of molding into 

multiple cavities at one shot. But the complexity of the tools makes the process an 

expensive alternative. Especially with thermosetting materials, the process gets more 

complex to adjust, optimize and monitor. [37] 
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With its advantages on allowing multiple cavities and processing thermosetting 

materials, transfer molding has gained worldwide acceptance and is the most common 

method today for large scale EMC encapsulation of electronic packages [38]. 

Compared to compression-molding, being able to mold into multiple cavities is a 

cutting-edge advantage for mass production purposes [35]. In comparison to injection 

molding, transfer molding process requires lower process pressures which makes it 

more suitable to encapsulate the delicate and intricate components [35]. Shorter 

sprues and runners make it possible to mold materials with shorter pot times [35]. 

During transfer molding, the preformed EMC pellet is first heated until it melts in a pot 

and then the transfer plunger compresses the molten EMC into the mold cavities in 

which the material is formed to the desired geometry as shown in Figure 2.7 [35]. After 

filling the cavities with molten EMC, the packing pressure is increased. Due to high 

temperatures of the mold plates, the thermosetting material will start forming further 

cross-links and solidify as a result of curing [39].  

 

Figure 2.7: Schematic diagram of a transfer molding press (a) initial state and (b) 
during molding [35] 
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The curing of the material must be controlled carefully during molding process since a 

fast curing may lead to an excessive increase in viscosity and have a negative impact 

on the flow properties [2]. A fast hardening of the material will cause defects in the final 

geometry and possibly damage the semiconductor constituents in the package as a 

result of viscous flow [2]. A slow and insufficient curing on the other hand, will lead to 

an insufficient hardening of the material thus to problems during ejection of the molded 

encapsulant [40]. 

2.1.4 Quality Criteria of EMC Encapsulants 

Being affected by various factors such as material properties, process parameters and 

environmental conditions, encapsulant defects might occur in any stage of 

manufacturing or assembly [5,41]. Examples to common process related defects 

include voids, polymer cracking, interface delamination, insufficient material cure and 

warpage [8]. In addition, the encapsulation process itself might lead to defects in non-

encapsulant elements in the package such as the wires and the chips due to EMC flow 

and shrinkage [8]. Figure 2.8 illustrates some of these defects. Since the package 

quality has a direct effect on the reliability of the electronic system, these manufacturing 

related defects can be highly critical for the whole product [42]. 

 

Figure 2.8: Schematic illustration for defect types in an encapsulant [5] 

During molding processes of EMCs, encapsulation stresses occur as a result of 

cure-shrinkage [43]. In addition, thermal stresses are built due to thermal shrinkage 

while cooling back to room temperature after the molding process. These residual 

stresses might promote the mechanical failure of EMC encapsulants through polymer 

cracking [44]. Furthermore, the presence of materials with dissimilar CTEs lead to high 

interfacial stresses because of dissimilar thermal shrinkage, and the cure-shrinkage of 
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EMC also contributes to these interfacial stresses [45]. When these stresses exceed 

the adhesion strength, delamination occurs and the components detach from each 

other, leading to a failure of the electronic package due to structural and electrical 

integration issues [46,47]. With the accompaniment of excessive moisture, the so-

called popcorning phenomenon might occur in which the encapsulant cracks as a 

result of high steam pressures acting on stress concentrated zones under high 

temperatures [45]. 

A major defect caused by the thermal mismatch is warpage, in which the part loses its 

planarity as a result of bending and deformation [8]. Warpage is a critical defect that 

leads to mechanical failures such as cracking and delamination, and also affects the 

package reliability in terms of thermal management, dimensional stability and integrity 

[10,48]. Being the focus point of this thesis, effecting mechanisms and reliability related 

influences of warpage is discussed in detail in Chapter 2.1.5. 

Voids are formed via the trapped air or gas inside the encapsulant, which are mostly 

released by the volitant content in the EMC or caused by the porosity in the pellet [49]. 

Figure 2.9 illustrates the void formation during transfer molding process. Corrosion 

formation on wires or other electronic components is caused by the voids in which the 

moisture condensation takes place [49]. Moreover, the gaps can induce stress 

concentrations and lead to polymer cracks [5]. 

 

Figure 2.9: Void formation during transfer molding a) pores and surface defects on 
the pellet b) void propagation during transfer [49] 

Wire sweep is the occurrence of wire displacements due to flow momentum of the 

molding compound [50]. Even though it is in theory possible to minimize wire sweep 

with adjustments in flow speed and flow paths, a low transfer rate with low viscosity is 

not possible in transfer molding of EMCs due to material curing [50]. The wire 
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displacement can cause short circuits in high density wire groups. Furthermore, the 

thin wires may even break under high tensile stresses [8]. 

Even though eliminating all these types of defects is not possible, they can be 

minimized with process parameter optimizations and additional steps applied after the 

molding process [8]. 

2.1.5 Warpage in EMC Encapsulants 

Warpage is the defective phenomenon in which the part loses its planarity due to 

bending and deformation as introduced in Chapter 2.1.4. It is found to be the main 

failure mode (~75 %) in thin encapsulated electronic packages [51]. Failure analysis 

results show that over 90 % of the coplanarity in a package is formed just after the 

molding process before any usage or storage effects [51]. After the molding process, 

the package is exposed to residual stresses when cooling down to room temperatures, 

and with the presence of dissimilar materials with different CTE values in the package, 

warpage is formed due to different shrinkage values and the adhesive forces in 

between these components [9]. Figure 2.10 illustrates the warpage formation in an 

EMC IC chip encapsulant with a PCB substrate on which the electronic components 

are mounted.  

 

Figure 2.10: Warpage formation in an IC chip encapsulant 

Even though the thermal stresses caused by the CTE mismatches were assumed to 

be the only source of warpage formation in the initial models, later studies show 

evidences to the effects of cure shrinkage on warpage [8,52]. During the material cure, 

the molten thermosetting materials transform into a viscoelastic solid and with further 

cross-link formation, the cure-shrinkage and cure related residual stress formations 

take place [53]. These considerations invalidate the assumption of stress-free 
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components mentioned above. While the part is being cured in mold cavity at high 

temperatures and its cure shrinkage is being restricted by geometrical constraints in 

the tool, residual stresses arise which later contribute to warpage formation when the 

part is taken out of the molding machine [43]. Figure 2.11 shows the volumetric 

changes due to thermal shrinkage and cure shrinkage. As seen, the specific volume 

decreases during curing as a result of further cross-link formation in between the 

monomers while the part is being cured at 𝑇mold [30]. In addition, the effects of 

changing glass transition temperature (increasing from 𝑇g0 to 𝑇g) can also be seen, 

which leads to a lower thermal shrinkage than the thermal expansion due to earlier 

transition into glassy state with a lower CTE value of 𝛼1 [9]. Chapter 2.1.6 gives detailed 

information about the cure effects on shrinkage, thus on warpage. 

 

Figure 2.11: Volumetric shrinkage due to cooling and curing during molding [43] 

Excessive warpage and residual stresses in the final encapsulant may cause device 

failure due to dimensional and geometrical instabilities [54]. A major problem arises 

considering the assembly of package to motherboards or to other packages [55]. 

Figure 2.12 illustrates the connection infeasibilities and warpage driven defects in an 

IC package. As seen, the manufacturing related warpage prevents the full integrity by 

hindering the solder operations for pins on the high elevated sides of the PCB. 

Furthermore, additional warpage can be induced in the package due to heat flow during 

soldering. Therefore, tensile stresses occur in the solder joints [56]. The compressive 

stresses may damage the chip and other functional elements in the package, or the 

tensile stresses acting on encapsulant might lead to cracks. The conductive elements 

on the PCB substrate may break due to tensile stresses [52]. 
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Figure 2.12: Schematic of warpage driven failures in an IC package  

Warpage can be minimized with the optimization of process parameters. Selection of 

materials with similar thermal properties is another critical factor for reducing warpage 

[10]. In addition, the package geometry and assembly are design related optimization 

possibilities [8]. Reduced cooling rate is also shown to be an alleviating strategy for 

resultant warpage [43,51]. Last but not least, post-mold cure is another common 

process to reduce the manufacturing related warpage in electronic packages [11]. 

Being the main process focused on in this thesis, the post-mold cure step and its 

effects on warpage is discussed in the following chapter. 

2.1.6 Post-mold Cure and Its Effects on Warpage 

During the molding process of EMC materials in which the temperature exceeds the 

reaction temperature, the resin and hardener transforms into a densely cross-linked 

three-dimensional network from their initial oligomeric mixture which is shown in 

Figure 2.13 (a) [29,57]. Molecular mobility in the network decreases with increasing 

cross-linking density as seen in Figure 2.13 (b), leading to a decrease in reaction 

speed [29]. Once the increased cross-linking density hinders the molecular mobility to 

a critical level that the material is not able to flow anymore, the so-called gelation 

occurs which is illustrated in Figure 2.13 (c). The material is not processable for 

molding operations beyond this point [57]. Furthermore, as the cross-linking level gets 

closer to fully dense structure, the reaction speed starts to decrease dramatically as a 

result of the very limited molecular mobility and low amount of free monomers left as 

shown in Figure 2.13 (d) [58]. Due to this decrease in reaction speed, the cycle time 

for molding is usually kept shorter than the required time to reach desired high 
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cross-linking densities with economic concerns [59]. The parts are taken out of the 

mold once they reach a sufficient hardness for proper ejection, but their properties at 

this state are not optimal due to low degrees of cure [12,60]. Therefore, post-mold cure 

(PMC) is an essential step in electronic packaging to achieve the required cross-linking 

density, as well as the required thermal, dimensional, and chemical stability of the 

encapsulant material [12]. In PMC step, the part is exposed to elevated temperatures 

again after the molding process to ensure higher cross-linking densities of the molding 

compound.  

 

Figure 2.13: 2D representation of thermoset curing a) unreacted monomers b) 
formation of small-branched molecules c) gelled but incomplete cross-linked network 

d) cured network with almost no free monomers [57] 

Ko and Kim [59] showed that the glass transition temperature, mechanical and 

adhesion strengths of EMC also increase after PMC with further increase in 

cross-linking density. With the mentioned changes during the process, the optimization 

of these material properties which were not completely fulfilled during molding is made 

possible through PMC [29,61]. In addition to optimization of mechanical properties, 

alleviating the resultant warpage is also amongst the goals of PMC in some cases [11]. 

The glass transition temperature (𝑇g) is a temperature range in which the molecular 

mobility increases due to the transition from the glassy state to gel/rubbery state of the 

material during heating [62]. Figure 2.14 shows the time-temperature-transformation 
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(TTT) diagram that illustrates the different material states during curing. As the 

cross-linking density increases, the 𝑇g of the curing thermoset increases from its initial 

value 𝑇g0. If 𝑇g exceeds the cure temperature 𝑇c at some point during reaction, the 

reaction speed decreases dramatically since the diffusion rate drops suddenly due to 

the transformation from gel/rubbery state to glassy state. This dramatic decrease in 

molecular mobility and reaction speed is called vitrification [63]. Devitrification of the 

material is possible via further heating, and the cure can resume for partially cured 

thermosets after devitrification [57]. When the cure temperature and cure time are high 

enough, the cross-linking density will reach its highest limit with the final reachable 

glass transition temperature of 𝑇g∞ [62].  

 

Figure 2.14: Time-temperature-transformation diagram for a thermosetting system 
[62] 

The above-mentioned shift in 𝑇g during PMC is a key point to decrease the 

manufacturing induced warpage of EMC encapsulants. Figure 2.15 shows the effects 

of increased 𝑇g on shrinkage. Assuming a process in which a part is transfer molded 

and then post-mold cured with the same temperature 𝑇cure for both steps, the glass 

transition temperature of the EMC increases from 𝑇g0 to 𝑇g during molding, and then 

from 𝑇g to 𝑇′g during post-mold cure. Since a big portion of the cross-links are formed 

during the molding operation, the cure shrinkage of the EMC is lower during PMC in 

comparison to its molding operation (see Figure 2.11 for reference). Δ𝜈1 being the 

thermal shrinkage after molding process while cooling back to room temperature 

before the PMC operation, it can be seen that the part is subjected to a smaller 
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shrinkage of Δ𝜈2 after PMC due to earlier transition back into glassy state with a lower 

CTE value of 𝛼1. As a result of lower shrinkage in EMC encapsulant, the thermal 

mismatch in between EMC and other package components with lower CTE values is 

compensated to some extent. Thus, the final warpage of the part is decreased. [9] 

 

Figure 2.15: Specific volume change during PMC - adapted from [9] 

Reducing the effects of thermal mismatch is also favorable for minimizing interfacial 

delamination [7]. As shortly mentioned in Chapter 2.1.5, additional thermal stresses 

are created during soldering operations of packages in the assembly step. Due to these 

additional stresses which occur while cooling back to ambient temperature after the 

soldering operation, interfacial delamination and encapsulation cracks may occur [8]. 

It was shown that the occurrence of delamination and cracks during this step is 

decreased with post-mold cure as a result of reduced thermal mismatch [59]. Increased 

adhesion and mechanical strengths are also benefits of PMC that increases the 

product reliability for further assembly operations and usage after manufacturing [64].  

The optimal duration for post-mold cure is an open area for improvements in the 

industry. The common practice is to post-mold cure the samples in the temperatures 

around 𝑇g∞ for long times up to 16 hours to reach the ultimate 𝑇g∞ value for thermal 

stability [12]. But it was shown that post-mold cure operations with several hours do 

not have significant effects on warpage and material properties since the biggest 

portion of the curing reaction takes place in the very first one hour interval [59]. Longer 

PMC times might even have disadvantages due to polymer ageing or degradation [65].  
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2.2 Machine Learning 

Machine learning is the study of statistical algorithms that enable the computers to 

simulate human learning activities [14]. As a more engineering-oriented definition, a 

computer is not programmed for a specific task, but it is programmed to learn for a task 

via extracting the underlying patterns from the data it was trained before [66].  

Machine learning has been a major mainstay of information technologies over the last 

30 years with increasing amount of data and newly developed algorithms being 

available [18,67]. It has been widely used in different areas such as finance, 

telecommunications and marketing with the purposes of classification and forecasting 

[14]. Spam e-mail recognitions, traffic jam predictions in online maps, personalized 

advertisements popping up in our devices are all examples of machine learning 

applications that are highly adapted into our daily lives [68]. With the advances in 

monitoring and other data collection techniques in medical applications, machine 

learning has become a well suited approach for quick and specialized diagnosis tasks 

also in the field of medicine [69]. Improved image processing techniques with machine 

learning are used for face recognition and autonomous driving [70]. Focusing on the 

industrial production, there is an increasing trend of machine learning usage for 

product and production optimization due to its capabilities on optimizing resource 

usage rates and production times [15].  

With a simple approach, the workflow of a machine learning model can be divided into 

5 main steps as data collection, data preprocessing, model building and training, model 

validation and execution as shown in Figure 2.16 [14,71]. 

 

Figure 2.16: Simplified workflow of a machine learning model  
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The first step of creating a machine learning model is data collection. The data-driven 

decision making and prediction capability of a machine learning model functions by the 

mathematical algorithms which are built over the data that is used for training [72]. 

Thus, the key point to a sound machine learning model is having a reliable data set to 

fit the mathematical algorithm. The quantity and quality of the data set directly affect 

the accuracy of the final predictions [73].  

A data set consists of multiple data points each representing an entity to analyze. Each 

point has the so-called features that describe the properties, such as the age, height, 

weight, and gender of a patient; or production parameters and materials used in an 

experimental sample. A complete set of features for a data point forms the feature 

vector for that point, and each one of these features comprises one dimension of the 

so-called feature space. The corresponding output values or classifications might also 

be included in the data set, such as the presence of weight abnormality in the patient 

or the resultant warpage values of the experimental samples. The classes or outputs 

for the given features are commonly called the labels. [67]  

Since acquiring a flawless set of data is not possible in real life, the preprocessing step 

plays a critical role for the reliability of the model [74]. When the available data is 

irrelevant, redundant, or noisy, the model training step gets more difficult and 

inaccurate. Thus, preprocessing operations such as data cleaning, normalization, 

feature extraction and feature selection might be applied for better results [75].  

Once the required data reliability is ensured, the following step is the training of the 

model. During training, the model extracts the relationship between the features and 

outputs (labels) of the train data if they are available. The weights and biases of the 

mathematical algorithm are updated iteratively to reach higher accuracy [74]. 

According to type and availability of data, different types of algorithms can be used in 

the model [66].  

The next step before the final execution of the model is the validation phase in which 

the trained model is tested with unseen data. The trained model might make good 

predictions for the train data but the aim here is to validate how good the model predicts 

for unseen data points. Once the model validation is completed, the final step is to 

execute the trained model and predict for unseen data from real-world applications 

[74].  
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In this sub-chapter, the fundamentals and the state of the art for machine learning are 

explained. Starting with introducing the main algorithm types used in machine learning 

in Chapter 2.2.1, the model validation concept and common validations methods are 

explained in Chapter 2.2.2. Two common supervised learning algorithms, namely 

Partial Least Squares Regression (PLRS) and Artificial Neural Networks (ANN) are 

described in Chapters 2.2.3 and 2.2.4 respectively. 

2.2.1 Types of Machine Learning Algorithms According to Data Availability 

Machine learning algorithms can be divided into four main subcategories as supervised 

learning, unsupervised learning, semi-supervised learning and reinforced learning 

according to type and availability of the train data as shown in Figure 2.17 [68]. 

Supervised learning methods consist of algorithms that use provided labels to train the 

data, while unsupervised learning algorithms aim to extract the similarities in features 

without the labels [66,67]. More details about these two methods are given in the 

following sub-chapters. Semi-supervised learning is a combination of both methods in 

which the data set has both labeled and unlabeled data [66]. Reinforcement learning 

algorithms on the other hand, are based on trial and error experiences in which the 

algorithm captures the reoccurrence patterns and create generalizations related to 

experienced occurrences [76,77]. 

 

Figure 2.17: Overview of different types of machine learning algorithms [68] 
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extracting the patterns in the train data. After detecting the underlying pattern in train 

data, it is then made possible to predict for the data points with unknown labels [78].  

Classification and regression are two main application areas of supervised learning 

which have categorical classes and numerical values as outputs respectively [67]. An 

example regarding classification with supervised learning is illustrated in Figure 2.18. 

Each point in train data has two features and a class as seen in Figure 2.18 (a). The 

features for the test points are known (Figure 2.18 (b)) and the model aims to predict 

the missing class information for these points as shown in Figure 2.18 (c) [66].  

 

Figure 2.18: Classification algorithm a) train data with labels b) external test data 
without labels c) predicted labels - adapted from [66] 

Curve fitting is another simple supervised learning example with the target of numerical 

outputs [66]. Figure 2.19 shows an example in which the model fits a curve to train 

data with known labels and then predicts for an external data point. 

 

Figure 2.19: Regression through curve fitting - adapted from [66] 
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Decision Trees, Naive Bayes and Random Forest. For regression on the other hand, 

Support Vector Machines (SVM), Linear Regression, Partial Least Squares 

Regression (PLSR) and Artificial Neural Networks (ANN) are commonly used [67,79]. 

Chapter 2.2.3 gives an overview about usage of PLSR and Chapter 2.2.4 describes 

the fundamentals and mathematical basis of ANN algorithms. 

Unsupervised learning 

In many real-life situations, labeling the data set is either difficult or not possible, 

therefore it is always a bottleneck to provide labeled data for machine learning 

applications [80]. In such cases, unsupervised methods are used to determine 

similarities and differences in between the data points without label information [81]. 

The sub-groups with similar features are called clusters and determining these feature 

affinities may consequently be helpful in finding unknown rules and correlations in a 

data set [82]. With reference to the clustering behavior, the normal behavior of a 

system can be represented, thus anomalies in the data set can be detected [66]. The 

clustering behavior can even be utilized for classification purposes without the label 

information [83]. 

As a simple example regarding clustering, an unlabeled data set with two attributes as 

Feature 1 and Feature 2 can be seen in Figure 2.20. In this example, the aim of the 

model would be grouping the similar types of data by detecting the clustering behaviors 

[66,83]. As the number of features increase, it gets harder for human perception to 

detect the clusters. That is why an algorithm-based approach is useful for such tasks 

with high-dimensional feature spaces [83]. 

 

Figure 2.20: A two-dimensional domain with a) unlabeled clustered data points b) 
extracted clusters and anomalies - adapted from [66] 

Feature 1 

F
e

a
tu

re
 2

 

Anomalies 

b) 

Feature 1 

F
e

a
tu

re
 2

 

a) 



2 State of the Art  24 

When working with high-dimensional data, unsupervised learning is widely used. Being 

able to detect the effects of each feature on clustering behavior, they can be put in a 

hierarchical order. The features that affect clustering the most can be extracted, while 

the features of low importance are being excluded from the feature space. Or some 

features with similar effects can be merged to one [67]. Figure 2.21 shows a cluster 

that is mapped on a 2D space which consists of features that show similar proportional 

trends. To take advantage of this similarity and simplify the data set, Feature 1 and 

Feature 2 are projected on a regression line and merged as Feature´ [82]. This 

operation is called dimensionality reduction and aims to simplify the data set without 

losing too much information. With the simplified data set, the algorithm will run faster 

and the data will take less storage space [66]. In some cases, when the number of 

data points (or train samples) is less than the dimensions of the data, the 

implementation of regression models might fail due to the phenomenon called Curse 

of Dimensionality [84]. Therefore, it is a useful preprocessing technique that can 

increase both accuracy and productivity of the model even though the labels are known 

for the data set [66,85]. 

 

Figure 2.21: Dimensionality reduction via merging a) clustering data points in a 2D 
feature space b) point projections on regression line c) reduced feature space with 

projected features [82] 

The common algorithms used for unsupervised learning include K-means and Decision 

Trees for clustering [86]. For dimensionality reduction on the other hand, Principal 

Component Analysis (PCA) and t-distributed Stochastic Neighbor Embedding are 

amongst the frequently used algorithms [67]. In this work however, supervised learning 

algorithms are used, and the focus will be on supervised methods from now on. 
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2.2.2 Model Validation 

The trained model might have different conditions according to how well it fits to train 

data [67]. Underfitting is the case where the model is not trained good enough as 

illustrated in Figure 2.22 (a) due to low number and quality of the train data or simple 

algorithms used [67]. Overfitting on the other hand, is the opposite problem in which a 

model performs really well on the samples from the training set but gives bad 

predictions for other external samples as illustrated in Figure 2.22 (b) [87]. It is 

therefore important to evaluate the model with external data as well to ensure a good 

fitting model as in Figure 2.22 (c) [88].  

 

Figure 2.22: Schematic illustration of a) underfitting b) overfitting c) good fit [67] 

A common practice to detect and avoid overfitting is splitting the available data, and 

holding a portion out of the training steps for further validation of the model with the 

unseen portion [89]. The portion that is used for building the model is called the train 

set. Train set contains samples with known labels. The validation set contains samples 

from the known provenance as well, but it is not used for training of the model. The 

model is then expected to perform similarly for train and validation data. Thus, the 

predictions for the validation set allows the accuracy assessment of the model [87]. 

The optimal ratio in between the train and validation data is still an area without a 

consensus despite the theoretical and numerical investigations. A commonly used ratio 

is 80 % and 20 % for train and validation portions respectively [89]. 

For many applications, the model assessments that are conducted only via validation 

data yields over-optimistic results as shown by Westerhuis et al [90]. Since higher order 

nonlinear functions are able to fit well to a data provenance, the risk is to create a 

model that fits well to data from the same provenance but performs poorly for the 

unseen data from separate data groups [88]. As the train and validation groups belong 
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to the same provenance, there is a chance of having a biased model assessment [88]. 

Therefore, having an additional unseen test data which has a good distribution over 

different input regions will ensure a better assessment of model performance also for 

different types of input data [88].  

2.2.3 Partial Least Squares Regression 

Partial Least Squares Regression (PLSR) is a method that includes regression, 

classification and dimensionality reduction techniques [91]. Following the same basis 

with Principle Component Analysis (PCA) which aims to reduce the dimensionality as 

shortly mentioned in Chapter 2.2.1, PLSR aims to predict a set of dependent outputs 

variables from the input set of independent variables via extracting the so-called latent 

variables, which stand for the input variables that has the biggest effect on the resultant 

outputs [92]. The extraction of latent variables reduces the multidimensionality of inputs 

to a lower number, thus allows predictions with a lower number of inputs [93]. For sake 

of simplicity, the governing equations for PLS are not introduced. 

As a supremacy against linear and multiple linear regression, PLSR can analyze 

strongly collinear, noisy and numerous input variables [94]. Due to this allowances, 

PLSR has gained a big attention in chemometrics, where wide spectral chemical data 

is being used [91]. 

2.2.4 Artificial Neural Networks 

Artificial neural networks (ANNs) are the mathematical representations of cerebral 

cortex part of animal brains. The structure and learning activities of the brain synapses 

are imitated via the large number of interconnecting elements and the mathematical 

functions assigned to these elements. [95]  

The studies for ANNs began in early 1940’s with the studies of McCulloch and Pitts 

[96], but only in the last quarter of 20th century the algorithms became suitable for 

real-life applications [97]. Nowadays, the ANNs are commonly used in a lot of real-life 

problems. Pattern and speech recognition, financial forecasting, image processing 

applications are amongst the most common usage areas [98]. Also, focusing on 

industrial applications, ANNs have been successfully used for optimization and 

modeling of variety of industrial production processes [34,99,100]. 
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Structure of an Artificial Neural Network 

A neural network works as a series of nonlinear functions that transform a set of input 

values to a set of output values [98]. This transformation is governed via the 

parameters called synaptic weights and biases of the so-called neurons in the structure 

[101]. The determination of these weights and biases is called learning or training [101]. 

A neuron with multiple inputs and a single output is illustrated in Figure 2.23.  

 

Figure 2.23: Schematic of a single artificial neuron with m inputs [88] 

The inputs 𝑥1, 𝑥1, … , 𝑥𝑚 are weighted by their corresponding elements 𝑤1, 𝑤2, … , 𝑤𝑚 

and the bias of the neuron 𝑤0 is summed with the weighted inputs. The output from 

the junction point 

𝑧 = ∑ 𝑥𝑖

𝑚

𝑖=1

𝑤𝑖 + 𝑤0 (2.1) 

is then transformed by a nonlinear activation function 𝑓 to form the output of 𝑎. 

𝑎 = 𝑓(𝑧) = 𝑓 (∑ 𝑥𝑖

𝑚

𝑖=1

𝑤𝑖 + 𝑤0) (2.2) 

The main goal of activation functions is to introduce a nonlinearity so that the algorithm 

is able to tackle complex nonlinear problems as well. Figure 2.24 illustrates some 

activation functions such as (a) Sigmoid, (b) Rectified Linear Unit (ReLU), and (c) tanh 

[102]. Normalization of the input data during preprocessing plays an important role at 

this step [103]. 
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Figure 2.24: Commonly used activation functions a) sigmoid b) ReLU c) tanh [102] 

An artificial neural network is built by organizing the neurons in layers. The layers in 

between input and output layers are called the hidden layers. The number of hidden 

layers and the number of neurons in each hidden layer assess the complexity of the 

network [101]. In feed-forward networks, the signal always flows from the input 

direction to the output direction. In other words, the output of a neuron is fed to the 

neurons of the following layer. [104] 

 

Figure 2.25: A multi-layered artificial neural network - adapted from [88] 

Figure 2.25 illustrates a 3-layer artificial neural network with an input layer of 𝑚 

features, two hidden layers of 𝑘 and 𝑙 neurons, and an output layer of a single neuron. 

With reference to Equation (2.2), the output 𝑦 can be expressed as 

b) ReLU(𝑧) = ቄ
𝑧,  𝑧 > 0
0,  𝑧 ≤ 0 
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𝑦 = 𝑓(3) (∑ 𝑎𝑖
(2)

𝑤𝑖,1
(3)

+ 𝑤0,1
(3)

𝑙

𝑖=1

) (2.3) 

where 𝑓(3) is the activation function used in the last layer, 𝑎𝑖
(2)

 and 𝑤𝑖,1
(3)

 are the outputs 

and weights of the 𝑖𝑡ℎ neuron from previous the layer respectively. Networks with more 

layers can be built following the same principle, and the equation can be expanded 

using the open notations from previous layers. 

Training Artificial Neural Networks 

The terms training or learning for ANN refer to the problem of minimizing a defined loss 

function [105]. The mentioned loss function is characterized by the error in between 

the true and the predicted outputs for the train data. With reference to Equation (2.3), 

one can derive that the prediction error of the network is a function of the weights. The 

minimization of the loss function 𝐸(𝑤) is done iteratively and the weights of the network 

are updated after each iteration until reaching a defined number of iterations or an error 

rate [34,106]. 

During training, the first phase is called the Forward pass in which the outputs are 

predicted through Equation (2.3). The weights are assigned randomly for the first 

prediction [106]. The error value for the prediction is then calculated via the defined 

loss function. A common function used to assess the error in such cases is the Sum of 

Squared Errors (SSE) that can be expressed as 

𝑆𝑆𝐸 =
1

2
∑(𝑦𝑖 − 𝑦′𝑖)2

ℎ

𝑖=1

 (2.4) 

where ℎ is the number of train data, 𝑦 and 𝑦′ are predicted and true output values 

respectively [106,107]. Mean Absolute Error (MAE) is another evaluation method 

which calculates the average absolute error in between true and predicted values as 

𝑀𝐴𝐸 =
1

ℎ
∑ |𝑦𝑖 − 𝑦′𝑖|

ℎ

𝑖 =1

 (2.5) 

with the same notation as in Equation (2.4) [108]. 
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Following the forward pass, the partial derivative of the loss function is calculated with 

respect to regression weights. This phase is called the Back Propagation [109]. To 

reach a local minimum of the loss function, the weights are updated in the opposite 

direction of the gradients, using the Gradient Descent method [106]. Every iteration 

cycle to update the weights is called an epoch [109]. Figure 2.26 shows a simplified 

gradient descent example for a univariate loss function, the index 𝑡 stands for the 

iteration number of the weight. When the derivate of the loss function is negative, the 

weight is updated in positive direction in the next iteration. Similarly, the update 

direction is positive when the derivative is negative [106]. 

 

Figure 2.26: Basic idea of back propagation a) initial weight with negative derivative 
b) first iteration in positive direction c) second iteration in negative direction – adapted 

from [106] 

The gradient of the differentiable loss function of a neural network is expressed as 

∇𝐸 = (
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) (2.6) 

where 𝑛 is the total number of weights in the network. As seen, loss functions of the 

networks in real applications are composed of many weight variables. Therefore, chain 

rule is used for ease of calculations [110]. The difference in between the weight index 

𝑛 in Equation (2.6) and the iteration index 𝑡 shown in Figure 2.26 should be kept in 

mind at this point to avoid misunderstandings. The index 𝑛 identifies the position and 

layer information of different weights that are connected to neurons in a network, 

whereas the index 𝑡 identifies the iteration number for each one of these weights 

individually. 
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After each iteration, the weights are updated using the gradient descent method  

𝛥𝑤𝑡+1 = − 𝜂
𝜕𝐸  

𝜕𝑤𝑡
 (2.7) 

𝑤𝑡+1 = 𝑤𝑡  +  𝛥𝑤𝑡+1  (2.8) 

where 𝜂 is the so-called Learning Rate constant and 𝑡 is the iteration index of the weight  

[110]. Learning rate is a constant that adjusts the iterative steps [107]. Higher learning 

rates increase the training speed, but the chances of finding the optimum point 

decrease [107]. Increased oscillation in iterative steps can also bring the risk of 

diverging from the optimal point [107]. Too low values on the other hand, lead to a slow 

and costly training and might end up with stagnating in a local minimum which is 

actually far from the global minima of the loss function [107]. 

To optimize the network training, additional terms can be included in gradient descent 

to tackle the above-mentioned issues with learning rate. A common method is adding 

a so-called Momentum term 𝛽, which is weighted with the weight change from the 

previous iteration step as 

𝛥𝑤𝑡+1 = 𝛽𝛥𝑤𝑡 −  𝜂
𝜕𝐸  

𝜕𝑤𝑡
 (2.9) 

𝑤𝑡+1 = 𝑤𝑡  + 𝛽𝛥𝑤𝑡 −  𝜂
𝜕𝐸  

𝜕𝑤𝑡
 (2.10) 

to smooth the oscillations in between iterations.  

2.3 Summary & Motivation 

Electronic packages are on high demand due to increased electronics usage in a broad 

scale of products. Encapsulation is a major process in electronic packaging since it 

directly affects the product’s final quality and reliability. Molding is the dominant method 

used today for encapsulation and EMCs are the most common polymer materials used 

for producing molded encapsulants to electronics.  
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PMC is a common process in electronic packaging industry that is applied following 

the molding processes to reach increased properties of the encapsulant material via 

further curing. PMC is mostly conducted with the same parameters in industry, aiming 

for the highest possible cross-linking density. It is known that warpage is affected by 

PMC, but there are not many studies investigating the effecting mechanisms. Thus, 

the effects of different PMC parameters on resultant part warpage are not well-known.  

Due to the reactive nature of EMCs, it is always a challenge to adjust the process 

parameters accordingly. As a contributing factor to these challenges, the properties of 

EMCs inevitably deviate for each batch of delivery from the material manufacturers. 

Despite being used for many years, transfer molding and post-mold cure processes 

are still far from being optimal. Most of the time, the parameter adjustments are done 

in trial-and-error manners. There is a search for alternative process optimization and 

adjustment methods due to these challenges. Being a proven method for such 

purposes, machine learning methods are successfully applied to industrial optimization 

problems. 

With reference to above mentioned reasons, this thesis aims to investigate the effects 

of different post-mold cure parameters on the warpage of EMC encapsulated electronic 

packages and create a process knowledge in the light of the conducted experiments. 

Due to the challenges of EMC process simulations, it is aimed to propose a machine 

learning based algorithm to optimize the PMC parameters with the main concern of 

reducing the final warpage.  
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3 Materials, Instrumentation and Methods 

This chapter describes the materials, the methods, and the instruments used in this 

work. Aiming for investigating the effects of different post-mold cure parameters on 

warpage in electronic packaging processes, sets of experiments are conducted. 

Figure 3.1 illustrates the overall steps and workflow followed during this study. Material 

characterization tests are carried out to have an understanding of thermal and cure 

behaviors of used materials. Experiments with different PMC parameters are 

conducted with the goal of creating an overall understanding of the warpage reduction 

mechanism during PMC and correlating the resultant warpage values with the 

parameters used. Moreover, with the data set created from the experiments, a machine 

learning (ML) algorithm is created that predicts for the resultant warpage and 

cross-linking density after post-mold cure, and then optimizes the parameters with 

reference to predicted values. 

 

Figure 3.1: Overall steps and workflow of the thesis 

Starting with Chapter 3.1, which introduces the two main types of materials used in the 

experiments, namely the epoxy-molding compound and the printed circuit board 

substrate; Chapter 3.2 describes the Differential Scanning Calorimetry (DSC) and 

Thermomechanical Analysis (TMA) tests which are performed to characterize their 
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thermal and cure behaviors. Following that, In Chapter 3.3, the overall workflow of the 

PMC experiments is described including the production of samples, conducted 

measurements for their warpage and cross-linking density values, the post-mold cure 

operations, and the experiment plan with different PMC parameters. Finally, the 

principles of the machine learning algorithm are explained in Chapter 3.4, including the 

subfunctions used for predicting the warpage and cross-linking density. 

3.1 Materials 

The samples that are used in the experiments consist of two main components. 

Namely, epoxy molding compound (EMC) and the printed circuit board (PCB) 

substrate as shown in Figure 3.2. The EMC is molded over the PCB substrate to form 

the encapsulant structure. 

 

Figure 3.2: Main materials used in samples a) EMC granules pressed in sheet form 
b) PCB substrates without mounted electronics 

The encapsulant material EMC consists of a highly filled epoxy resin with ~90 % filler 

content. The exact composition is not known since it is not published due to material 

manufacturers policies. It is available in granular form and pressed into sheets before 

molding as shown in Figure 3.2 (a). The granules and the pressed sheets are stored 

in a freezer to avoid further curing reactions that might take place at room temperature. 

The PCB substrate which is shown in Figure 3.2 (b) is a single layer glass epoxy 

laminate with a thickness of 200 µm, which normally includes mounted sensor 

elements to be encapsulated. These elements are not included in the substrates used 

in the experiments for research purposes.  

a) b) 
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3.2 Material Characterization 

This chapter explains the tests conducted for characterizing the thermal properties and 

cure behaviors of EMC and PCB substrate. Differential Scanning Calorimetry (DSC) 

measurements are conducted to assess the cure behaviors, degrees of cure and 

𝑇g values of EMC encapsulants with different cross-linking densities. In addition, to 

determine the 𝑇g value and to inspect any possible curing reactions of glass epoxy, 

DSC measurements for PCB substrate are carried out as well. Chapter 3.2.1 gives a 

brief introduction to DSC method and explains the measurement details. As the second 

method due to some insufficiencies of DSC, Thermomechanical Analysis (TMA) is 

used to estimate the CTE and 𝑇g values of fully cured EMC, which is described in detail 

in Chapter 3.2.2.  

3.2.1 Differential Scanning Calorimetry 

Differential Scanning Calorimetry is a thermal analysis technique that is commonly 

used to study the cure kinetics of thermosets [111]. For the measurements, the test 

and reference materials are placed in crucibles (mostly made of Aluminum) and then 

positioned on the heaters in a heating chamber [112]. An empty Aluminum crucible 

can be used as a reference as well [112]. According to ASTM Standard E473-22d 

[113], the difference in between the heat flows into test and reference samples is 

measured as a function of temperature while they are being exposed to a controlled 

temperature program. Important thermal properties such as the reaction start 

temperature, glass transition temperature 𝑇g, melting temperature 𝑇m and reaction 

enthalpy 𝛥𝐻 can be determined via DSC [114]. An example DSC curve is shown in 

Figure 3.3. 

                            

Figure 3.3: An example DSC curve - adapted from [112,115] 
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The degree of cure 𝛼 of a thermoset can be calculated via the heat flow data acquired 

from the DSC curves as an indicator of cross-linking density [111]. The reaction rate 

𝑑𝛼/𝑑𝑡 is assumed to be directly proportional to heat flow 𝑑𝐻(𝑡)/𝑑𝑡 [111]. Under this 

assumption, the degree of cure can be expressed as  

𝛼 =
1

𝛥𝐻total
∫ (

𝑑𝐻(𝑡)

𝑑𝑡
) 𝑑𝑡

𝑡

0

 (3.1) 

where 𝛥𝐻total is the total reaction enthalpy of the non-cured reactant during a full curing 

reaction from its non-cured state [5,57]. It should be noted that 𝑑𝐻(𝑡)/𝑑𝑡 corresponds 

to the ordinate of the DSC curve when plotted over time [57]. The reaction enthalpies 

of the samples are calculated via the area under the exothermic peaks of DSC curves, 

and then used as a measurable indicator of cross-linking density with reference to 

Equation (3.1). Moreover, the 𝑇g values at the given states are estimated with 

reference to ASTM Standard E1356-08 [115]. Even though the midpoint temperature 

𝑇g(m) is used more often in practice to determine glass transition temperature via DSC, 

return-to-baseline temperature 𝑇g(r) of the samples are also evaluated since it indicates 

the complete transition into gel state which is an important step for warpage reduction 

during PMC [115]. Chapter 4.2.2 gives a more detailed explanation about this point. 

The measurements are conducted with the device DSC 204 F1 Phoenix from 

NETZSCH-Gerätebau GmbH, Selb, Germany. A non-isothermal temperature program 

with a heating rate of 10 °C/min is used within a temperature range of 0 °C to 300 °C. 

Liquid nitrogen is used as coolant.  

To characterize the curing behavior of EMC, DSC specimens with 30±2 mg masses 

are extracted from the molded samples with different molding parameters and then 

placed in 25 µl Aluminum crucibles for measurements. For the non-cured state of the 

material, the granules are cold pressed into 30±2 mg sheets without the molding 

operation and then stored in a freezer to avoid further material curing.  

Another set of DSC measurements are conducted to inspect the glass transition 

behavior of PCB substrate and to detect any possible curing in the glass epoxy during 

post-mold cure. Specimens with 30±2 mg masses are extracted from the PCB 

substrates of molded parts, and DSC measurements are conducted before and after 

their PMC operations. 
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3.2.2 Thermomechanical Analysis 

Thermomechanical Analysis (TMA) is described as a thermal analysis technique that 

measures the deformation of a substance as a function of temperature while it is under 

non-oscillatory load and subjected to a controlled temperature program [113]. During 

TMA, the sample is placed in a heated container and a probe is positioned above in a 

way that it applies a load to the sample as shown in Figure 3.4. The displacement of 

the probe during the heat program is measured via a high precision detector (usually 

a linear variable displacement transducer), which is then used to determine the 

deformation of the loaded sample [116]. TMA method can be used to determine a 

variety of material properties such as CTE, melting temperature 𝑇m, and glass 

transition temperature 𝑇g.  

 

Figure 3.4: Schematic of a Thermomechanical Analyzer – adapted from [116] 

In this work, the TMA method is used to obtain the 𝑇g value of fully cured state of EMC 

since it is hard to obtain 𝑇g information of highly cross-linked thermosets with DSC 

[116]. The measurements are conducted using the device TMA Q400 V22.5 from 

TA Instruments, New Castle, USA. A program with the temperature range -60 °C to 

270 °C, a heating rate of 5 °C/min, and a compression load of 0.1 N is used. In 

accordance with ASTM Standard E831 – 19 [117], specimens are cut out from a 1 mm 

thick EMC wafer, which is molded with 𝑇mold = 170 °C and 𝑡mold = 120 s, and then 

post-mold cured with 𝑇PMC = 175 °C for 𝑡PMC = 4 h to reach an almost full cross-linking 

density of EMC. The cutting operation is conducted with air cooling to avoid further 

thermal effects despite the PMC operation. Since producing proper TMA samples out 

of granular EMC was not possible without molding, no TMA measurements are 

conducted for non-cured state of EMC.  

  Sample 

  Heated container 

 Thermocouple 

  Detector (LVDT) 

Load 

  Probe 
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3.3 Post-mold Cure Experiments 

To inspect the effects of different PMC parameters on part warpage, sets of PMC 

experiments are conducted following the systematic illustrated in Figure 3.1 (ii). Firstly, 

the samples are produced with the methods and details introduced in Chapter 3.3.1. 

Following the production, the IR spectra and initial warpage values of the samples are 

measured as described in Chapter 3.3.2. The samples are then post-mold cured with 

the considerations and parameter sets introduced in Chapter 3.3.3. Following the PMC 

operations, the measurements are repeated directly.  

3.3.1 Sample Production 

As the first step of experiments, the parts are produced to be post-mold cured later. 

This chapter introduces the special molding method that is used for molding the 

samples, followed by the explanation of preparation steps, and used molding 

parameters. 

The experimental samples shown in Figure 3.5 are produced using the method Local 

Pressure Molding, which is a combination of transfer molding and compression 

molding that enables covering a substrate with a mold material [118].  

 

Figure 3.5: Molded sample 

The hydraulic press machine that is used for molding operations (VSKO 25 from 

Lauffer GmbH & Co. KG, Horb am Neckar, Germany) consists of upper and lower 

heating plates as shown in Figure 3.6. The tool plates are assembled on heating 

plates. The lower plate houses the mold cavity and the compression stamp, which is 

geometrically divided into two main sections as rear and front. 
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Figure 3.6: Press machine and the mold cavity used to produce samples  

 

Figure 3.7: Schematic process steps in local pressure molding a) placing the EMC 
sheets and PCB substrate b) heating plates close c) compression stamps transfer 

and compress molten EMC d) solidified part is ejected 
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The molding procedure is illustrated in Figure 3.7. After the plates are heated up to 

mold temperature, a molding film is laid over the tool to prevent molten epoxy from 

sticking in the stamp clearances and on the surfaces. The PCB substrate is attached 

to upper tool plate using a heat resistant tape. The pressed EMC sheets are then 

placed on compression stamps as shown in Figure 3.7 (a). After the plates are closed 

(Figure 3.7 (b)), the compression stamps elevate and transfer the molten EMC into 

the main cavity through multiple flow channels while the material is still in pot time with 

low viscosity that enables proper material flow (Figure 3.7 (c)). During packing, the 

EMC viscosity increases with further curing of EMC as mentioned in Chapter 2.1.3. 

Once the required hardness is reached the plates are opened, and the molded part is 

ejected and removed from the molding film (Figure 3.7 (d)). 

Even though the tool is designed to be used with two EMC sheets, one sheet is used 

to produce the experiment samples in this work in order to have a material flow from 

one side and avoid air gaps in the middle area where the flows from both sides meet. 

EMC granules are pressed into sheets with 6±0.05 g masses and kept in a freezer. 

Before molding, the sheets are brought to room temperature in a desiccator.  

To have a larger process window to inspect the effects of PMC, it is aimed to have the 

largest possible amount of unreacted molecules remaining in EMC after molding 

process. However, a certain level of cross-linking density is required for proper ejection 

of the molded part as mentioned in Chapter 2.1.3. Therefore, the minimum mold cycle 

that allows a proper part ejection is investigated. Keeping other molding parameters 

constant as 𝑇mold = 170 °C, material transfer velocity 𝑣 = 0.2 mm/s, and packing 

pressure 𝑃 = 50 bars, different mold cycle times are tested and 𝑡mold = 65 s is 

determined as the minimum possible cycle time that yields a proper cavity filling and 

ejection. A total of 108 samples are molded with the parameters 𝑇mold = 170 °C and 

𝑡mold = 65 s to inspect the effects of different PMC parameters on final warpages of 

the parts. 

As an important point, it should be noted that the molding machine had an unexpected 

failure during production of the parts and had a repair operation after the 54th sample. 

Therefore, even though they are all produced with the same molding parameters 

𝑇mold = 170 °C and 𝑡mold = 65 s, the samples are named as Sample Group A for the 
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first 54 samples before the machine failure, and Sample Group B for the last 54 

samples which are produced after the repair.  

Even though the main investigations for PMC effects on warpage are conducted using 

the sample groups A and B, some parts with different molding parameters are also 

produced to have more data points for the machine learning algorithm. 

Sample Group C consists of parts which are molded with 𝑇mold = 170 °C and 

𝑡mold = 90 s to have a smaller amount of unreacted molecules left for PMC. It is aimed 

to include some parts with different cross-linking densities and different initial warpages 

to have a larger interval for the train data. The details about the PMC operations of 

these samples are explained in Chapter 3.3.3. 

3.3.2 Measurements  

To assess the effects of PMC on part warpage and EMC cross-linking density, 3D 

Optical Profilometer and Fourier Transform Infrared Spectroscopy measurements are 

conducted respectively, directly before and after the PMC operations. The measured 

values before and after PMC are then compared to correlate with the PMC parameters 

used.  

Fourier Transform Infrared Spectroscopy for Determining Cross-linking 

Density 

The basis of infrared spectroscopy is the interaction of infrared light with matter [119]. 

When a sample is subjected to a beam of infrared light, the chemical bonds vibrate at 

the wavelengths which match their vibration modes, and they absorb the radiation at 

these matching wavelengths while vibrating [120]. Thus, the chemical structure of the 

samples can be determined based on the infrared absorbance [119]. The peaks in the 

infrared spectrum indicates the presence of the corresponding chemical bonds or 

functional groups [121]. 

Fourier transformation infrared (FTIR) spectroscopy is a non-destructive method for 

identification of chemical compounds via IR spectra [122]. The principle of FTIR 

spectroscopy is based on the optical principle of Michelson interferometer, which uses 

a beam splitter and divides the IR beam coming from the source into two parts, one 

directed to a stationary mirror and the other one to a moving mirror [121]. After 

reflecting back from the mirrors, the recombined beams form an interference pattern, 
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and due to absorbed infrared energy, fluctuations in the intensity occur in time domain 

[123]. In FTIR spectroscopy, the time domain is transformed to the frequency domain 

using the Fourier transformation as shown in Figure 3.8. With this transformation, the 

evaluation of the functional groups that correspond to specific frequencies are made 

possible [121,124]. 

 

Figure 3.8: Fourier transformation of an interferogram to a spectrum [124] 

There are three main sampling modes for FTIR Spectroscopy, namely transmission, 

reflectance and attenuated total reflectance [122]. Attenuated Total Reflectance (ATR) 

is a sampling method that allows fast and accurate IR spectroscopy analyses of liquid 

and solid specimens [125]. The IR beam is focused on an ATR crystal with a high 

refractive index, as a result the beam reflects internally in the crystal and these internal 

radiations penetrate the crystal surface a few microns towards the sample as shown 

in Figure 3.9 [122]. Since the penetration depth is so small, a good contact in between 

the crystal and the samples must be ensured for proper absorption in sample 

[122,125].  

 

Figure 3.9: Attenuated Total Reflectance – adapted from [122] 
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In this work, the ATR-FTIR Spectroscopy method is used to monitor the changes in 

chemical composition of EMC material. The changes in IR spectra of EMC materials 

during molding are observed by Niegisch et al [126]. Ng and Hooi [61] detected the 

presence of PMC treatment in EMC encapsulated packages using FTIR spectroscopy. 

In the light of these studies, the main goal is to detect the changes that occur in IR 

spectrum during PMC, and to correlate these spectral changes with the changes in 

cross-linking density of the material.  

The measurements are conducted using a Bruker ALPHA II type FTIR Spectrometer 

with a Platinum ATR tip. A measurement program with a resolution of 4 cm-1 over the 

wavenumber range 400 cm-1 – 4000 cm-1 is used. 12 scans were taken for each 

measurement and then these scans are averaged to achieve the resultant spectrum. 

The background spectrum is measured with the same settings before each 

measurement session. The first measurements for the samples are conducted directly 

after their molding processes, and then the parts are post-mold cured with different 

parameters. After PMC, the parts are kept in a desiccator until the second 

measurements. This waiting time is always kept under 12 hours. 

Warpage Measurements and Evaluations 

The warpage measurements are conducted using a 3D Optical Profilometer. Optical 

profilometry is a method that is used to study the height differences and surface 

topographies of objects. Instead of physical probes, the optical profilometers work on 

the principle of light reflection. It is a non-destructive and non-contact method that 

allows fast analyses. In this work, a device with Confocal Grid Structured Illumination 

(CGSI) is used. CGSI profilometry works with the principle of illuminating a grid pattern 

on the sample surface and detecting the distortions in the grid pattern with reference 

to a focus plane with undistorted grid [127,128]. Figure 3.10 illustrates a schematic for 

a CGSI profilometry setup (a), the object image with illuminated grid pattern (b), and 

the resultant height map (c) which is computed via the deformed grid pattern.  

The measurements for warpage evaluations are conducted with a VR5000 Optical 3D 

Profilometer (Keyence GmbH, Neu-Isenburg, Germany), which has a measurement 

tolerance of ±10 μm in vertical direction. Acquiring the raw surface topography of the 

warped samples, a Python script is used to compute the warpage values from the 

scanned height information. Figure 3.11 illustrates the methodology used for warpage 
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evaluations. Considering the structure of the samples, only the warpage of middle area 

that is highlighted in Figure 3.11 (a) is considered since the sensors and other 

electronics which are damaged by warpage are located in that area in real life 

applications. Starting with the scanned 3D height map (Figure 3.11 (b)), a circle is 

fitted in the horizontal cross-section that passes through the symmetry center O as 

shown in Figure 3.11 (c). The fitted radius and the length of the curvature is used to 

calculate the deflection 𝛿 which is shown in Figure 3.11 (d). The cross-section is then 

rotated every 0.25° degrees around the center point O, and the cross-section with the 

biggest 𝛿 value is taken as the critical cross-section, and 𝛿max at that cross-section is 

assigned as the critical warpage of the part.  

 

Figure 3.10: 3D Optical Profilometer a) schematic CGIS setup b) grid illuminated 
image c) 3D height map of the sample – adapted from [127,128] 

 

Figure 3.11: Principle of python script for warpage evaluation a) scanned image and 
area of interest b) 3D height data c) circle fitting in cross-section d) calculating the 

deflection via the curvature  
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3.3.3 Post-mold Cure Experiments 

To investigate the effects of different PMC parameters on warpage, the molded 

samples are post-mold cured with varying temperatures and times. Before PMC, the 

samples are kept in ambient conditions and once warpage and IR spectra 

measurements are done, they are put in a fan oven for their PMC operations. Table 3.1 

summarizes the molding parameters used in different sample groups as described in 

Chapter 3.3.1, and the parameters used for their PMC operations are shown in 

Table 3.2. After PMC, the samples are brought back to room temperature in ambient 

conditions and the measurements for warpage and IR spectra are repeated directly. 

Table 3.1: PMC experiments - mold parameters used in different sample groups 

Sample Group Mold temperature in °C Cycle time in s Quantity 

A 170 65 54 

B 170 65 54 

C 170 90 27 

Table 3.2: PMC experiments - PMC parameters used in the experiments for different 
sample groups 

PMC 
Temperature  

PMC time in min 

5 10 20 30 60 120 180 240 

185 °C - B, C B B, C B, C B B B 

170 °C A A, C A, B A, B, C A, B, C A A A 

160 °C - A, C A A, C A, C - - - 

150 °C - A, B A, B  A, B A, B B B B 

3.4  Optimization Algorithm 

As the second part of the thesis after experimentally investigating the effects of 

different PMC parameters on resultant warpage of an electronic package, a machine 

learning based optimization algorithm is created that predicts the optimal PMC 

temperature and PMC time which yield the desired part warpage and EMC 

cross-linking level after the PMC operation. Even though the main quality criterion 

focused on in this thesis is warpage, cross-linking density of the EMC encapsulant is 

the major consideration for real-life PMC operations. Therefore, the reaction enthalpy 

of EMC is also included in the optimization algorithm as a measurable indicator of 

cross-linking density with reference to the principle mentioned in Chapter 3.2.1. 
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Figure 3.12 illustrates the flowchart for PMC parameter optimization using the 

machine learning model. As seen, the part has the initial warpage 𝛿0 and initial reaction 

enthalpy ℎ0 before its PMC operation. The non-destructive 3D Profilometry and ATR-

FTIR Spectroscopy measurements are conducted to correlate with these initial values 

and then the measurements are fed into the machine learning model also with the 

desired final warpage 𝛿′desired and desired final reaction enthalpy ℎ′desired. The model 

then iteratively predicts the optimal PMC parameters that yield the desired values. 

 

Figure 3.12: Flowchart for process optimization with the machine learning model 

From the perspective of the machine learning model, PMC temperature 𝑇PMC and PMC 
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This subchapter describes the principles behind the introduced machine learning 

model in detail. Starting with data preparation in Chapter 3.4.1, the algorithms used in 

warpage and enthalpy regression functions are described in Chapters 3.4.2 and 3.4.3 

respectively. Following these, in Chapter 3.4.4, the principle of the optimization tool is 

introduced in which all other functions are used together with different tasks. 

3.4.1 Data Preparation 

To train the regression tools, two different data sets are used. The first data set is 

created via the PMC experiments conducted in context of the thesis. Having the 

measured warpage values 𝛿0 and 𝛿′ , the IR spectra 𝐼𝑅0 and 𝐼𝑅′, and knowing the used 

PMC parameters 𝑇PMC and 𝑡PMC, the data points for the molded samples are created. 

These data points include the warpage values and IR spectra before and after PMC, 

and different PMC parameters used for each one of these samples. This data set is 

used for training warpage and enthalpy regression functions. Some of the data points 

are listed as examples in Table 3.3. In accordance with the requirements, the features 

and the labels are selected accordingly for training. 

Table 3.3: Data Set 1 – Data acquired from PMC experiments 

Sample 

Measurements before PMC PMC  Measurements after PMC 

𝛿0 in 
μm 

IR intensities in A.U. 𝑇PMC 
in °C 

𝑡PMC in 
min 

𝛿′ in 
μm 

IR intensities in A.U. 

X1 X2 … Xn X′1 X′2 … X′n 

PMC 1 388 0.96 0.96 … 0.12 170 5 275 0.96 0.96 … 0.21 

… 

PMC 52 362 0.94 0.95 … 0.16 150 60 192 0.93 0.93 … 0.15 

… 

PMC 106 644 0.98 0.98 … 0.35 185 240 506 0.96 0.96 … 0.22 

Since DSC measurements require destructive sample preparation for molded parts, 

another previously prepared data set is used to train a subfunction for enthalpy 

regression. EMC granules are cold pressed into 30±2 mg sheets and then cured in a 

fan oven with varying temperatures and times. After curing, ATR-FTIR spectroscopy 

measurements are conducted to acquire IR spectra of the samples with different cross-

linking densities. Following that, DSC measurements are performed to measure their 

reaction enthalpies. Having the measured IR spectra and reaction enthalpies for the 

samples with different cross-linking levels, a data set was created prior to this work. 

Table 3.4 shows some of the data points included in this data set. 
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Table 3.4: Data Set 2 – External data acquired from DSC specimens 

Sample 
IR intensities in A.U. Measured reaction 

enthalpy in J/g X1 X2 … Xn 

DSC 1 0.97 0.96 … 0.89 28.85 

… 

DSC 233 0.97 0.97 … 0.92 9.11 

… 

DSC 386 0.96 0.96 … 0.79 1.76 

Prior to being used for training the machine learning models, some preprocessing 

steps are applied to data sets. The IR spectra are normalized to overcome the 

measurement related deviations in between intensities, and the wavenumbers outside 

the range 600 cm-1 – 1800 cm-1 are cropped to decrease the spectral features that are 

irrelevant to EMC material. Similarly, the PMC parameters and measured warpage 

values are normalized to train the ANN algorithms. 

3.4.2 Warpage Regression 

Being the main quality criterion considered in this thesis, a machine learning based 

function is created to predict the final warpage of the parts after their PMC operations. 

As shown in Figure 3.13, the function takes the inputs of initial warpage, initial IR 

spectrum and the PMC parameters, and predicts for the resultant warpage after PMC. 

 

Figure 3.13: Flowchart for warpage regression function 

To create the function, an ANN algorithm is used. The algorithm is trained with 
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and learning parameters are tested to find a feasible architecture and a proper 

parameter set. Chapter 4.3.1 explains these parameters and the predicted values. 
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the initial reaction enthalpy ℎ0 with the input of initial infrared spectrum 𝐼𝑅0. Following 

that, Step II predicts for the final reaction enthalpy ℎ′ in accordance with the input 

parameters of PMC temperature 𝑇PMC and PMC time 𝑡PMC. 

 

Figure 3.14: Flowchart for enthalpy regression function 

Just like warpage regression function, an ANN algorithm is used to build the function. 

The architecture and learning parameters from warpage regression model are used for 

enthalpy regression as well since the input features are almost the same with only one 

numerical output. To train the enthalpy regression function, both Data Set – 1 and 

Data Set – 2 are used in combination for different steps.  

3.4.4 Optimization Cycle 

The parameter optimization is done iteratively via predicting the final warpage 𝛿′ and 

the final reaction enthalpy ℎ′  values for varying PMC parameters. The regression 

functions are used for predicting for the iterated steps as shown in Figure 3.15. 

 

Figure 3.15: Flowchart for optimization tool 
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The initial warpage value 𝛿0 and initial IR spectrum 𝐼𝑅0 of the part are fed into the 

model as well as the desired values for final warpage 𝛿′desired and final reaction 

enthalpy ℎ′desired. The iterative loop is then started for PMC temperature 𝑇PMC itr. and 

time 𝑡PMC itr., and the final values for warpage and reaction enthalpy are predicted using 

the regression functions. The values for 𝑇PMC itr. and 𝑡PMC itr. are assigned randomly for 

the first iteration. The cost function   

J = 𝑤𝛿(𝛿′desired − 𝛿′pred )
2

+ 𝑤ℎ(ℎ′desired − ℎ′pred )
2

+ 𝑤𝑇(𝑇PMC itr.)
2 + 𝑤𝑡(𝑡PMC itr.)

2 (3.2) 

is defined where 𝛿′pred and ℎ′pred stand for predicted final warpage and predicted 

reaction enthalpy values, and 𝑤𝛿, 𝑤ℎ, 𝑤𝑇 and 𝑤𝑡 are the corresponding weights to 

quality and efficiency terms to define their importance for the total cost. As seen, the 

cost function increases when the predicted quality terms diverge from the desired 

values. Similarly, the increasing time and temperature increase the cost since they 

increase the process costs for PMC operation. Using a modified gradient descent 

approach with reference to Giani’s work [34], the PMC parameters are updated after 

each iteration in the direction of decreasing cost. When 𝛿′ and ℎ′ are lower than their 

desired values, then the weights 𝑤𝛿 and 𝑤ℎ are assigned as 0 for that iteration step 

since no costs will arise when the desired values are satisfied. Once the cost is 

stagnated at a point, or decreased to a defined level, the iteration cycle is stopped and 

the parameters that yield the minimum cost are presented as the optimal parameters 

𝑇PMC opt. and 𝑇PMC opt.. Appendix A1 gives a more detailed description of the 

optimization tool and the gradient descent method used for parameter iterations. 
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4 Results 

Following the methods and experimental plan explained in Chapter 3, this chapter 

presents the acquired results. Starting with the findings from material characterization 

tests and their interpretation in Chapter 4.1, the results for post-mold cure experiments 

are presented and evaluated in Chapter 4.2. Finally, in Chapter 4.3, the prediction 

outcomes from the machine learning model are shown and discussed. 

4.1 Results from Material Characterization Tests 

This chapter presents the results from the material characterization tests, which are 

conducted to understand the thermal and cure behaviors of the materials. The results 

from DSC measurements and their interpretations are presented in Chapter 4.1.1. As 

following, the outcomes from TMA measurements are described in Chapter 4.1.2. The 

important points from both tests are then summarized and interpreted in Chapter 4.1.3. 

4.1.1 Differential Scanning Calorimetry Measurements 

Differential scanning calorimetry (DSC) measurements are conducted to measure the 

reaction enthalpies and the glass transition temperatures of EMC at different 

cross-linking densities. Also, measurements for PCB substrate are conducted to 

investigate the glass transition behavior and to detect any possible curing of PCB 

during PMC with the considerations and settings described in Chapter 3.2.1.  

Results for EMC  

Figure 4.1 shows the dynamic heating sections of the DSC curves acquired from the 

EMC specimens extracted from the samples that are molded at 170 °C with varying 

cycle times. The exothermic peaks can be seen in the temperature interval 

120 °C – 210 °C. The curing behavior of EMC can be observed via the disappearing 

peaks as the mold cycle time increases. There are no clearly observable exothermic 

peaks left after 110 seconds of molding. 

The reaction enthalpies of the samples are calculated via the areas under the 

exothermic peaks in DSC curves as described in Chapter 3.2.1. Figure 4.2 shows the 

averaged measured reaction enthalpies. As seen, the reaction enthalpy of raw EMC is 

measured as 28.76 J/g, and then the values decreased rapidly until 65 seconds of 
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mold cycle time with a measured reaction enthalpy of 2.66 J/g. Then the slope of the 

curve flattened, and after 110 seconds the enthalpy values converged to 0 J/g.  

 
Figure 4.1: Dynamic heating section of DSC curves acquired from EMC samples 

molded at 170 °C with different cycle times  

 

Figure 4.2: Measured reaction enthalpies of EMC samples molded at 170 °C with 
different cycle times 

A glass transition range is clearly visible for raw EMC in Figure 4.1. As mentioned in 

Chapter 3.2.1, midpoint 𝑇g(m) and return-to-baseline 𝑇g(r) temperatures of the glass 

transition region are taken into consideration. Focusing on a smaller window in the 
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Figure 4.3 (a). With further curing of EMC during molding, these values increased to 

𝑇g(m) EMC 55s | 170°C ~97.5 °C and 𝑇g(r) EMC 55s | 170°C ~110 °C after 55 seconds of molding 

at 170 °C as seen in Figure 4.3 (b). Referencing Chapter 3.2.2, with increasing 

cross-linking density, the determination of glass transition interval via DSC gets 

difficult. No clear observations on glass transition were therefore possible via DSC 

measurements for the samples with cycle times longer than 55 s.  

 

Figure 4.3: Glass transition temperatures acquired from DSC curves a) non-cured 
raw EMC b) EMC molded for 55 s at 170 °C 

Results for PCB substrate 

Even though the externally supplied PCB substrates were assumed to be at their full 

cross-linking densities, DSC measurements are conducted before and after their PMC 

operations to investigate the glass transition behavior and any possible curing of the 

glass epoxy. To do so, DSC specimens are extracted from the PCB substrates of the 

samples which are molded with 𝑇mold = 170 °C and 𝑡mold = 65 s as described in 

Chapter 3.3.1. Similarly, another group of specimens are extracted from the samples 

which are molded with the same parameters, but also post-mold cured with 

𝑇PMC = 185 °C and 𝑡PMC = 120 min. Two measurements are conducted for each group. 

Figure 4.4 shows the dynamic heating sections of the DSC curves acquired from the 

above-mentioned PCB specimens with and without PMC operations. When the PCB 
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whereas the average return-to-baseline temperature has shifted from 

𝑇g(r) PCB ~ 165 °C to 𝑇′g(r) PCB 
 ~ 175 °C. The endothermic peaks at around 250 °C are 

present in all of the curves, which indicate material melting followed by the thermal 

degradation after ~ 270 °C. The endothermic peaks in the interval 80 °C – 110 °C on 

the other hand, are only seen in the curves of the samples without PMC, which indicate 

the presence of trapped humidity. 

 

Figure 4.4: DSC curves of PCB substrate before and after 2 hours PMC at 185 °C 
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from glassy state to gel state, the dimension change curve gets steeper due to 

increasing CTE value. Glass transition temperature can be determined via observing 

the change in the slope of the curve. From the conducted measurements, this point is 

determined as 𝑇′g EMC ~ 177 °C for the EMC at its fully cured state after PMC. Also, as 

an additional information, the CTE values are measured as 8.73 µm/(m.°C) and 

22.50 µm/(m.°C) at the temperatures 120 °C and 240 °C respectively. 

 

Figure 4.5: TMA measurements for highly cross-linked EMC 

4.1.3 Overview and Interpretation of Material Characterization Tests 

Starting with overviewing the results for EMC, DSC measurements showed that the 

EMC material reached a highly cross-linked structure after the molding operation with 

mold temperature 𝑇mold = 170 °C and the cycle time 𝑡mold = 110 s, after which the 

measured reaction enthalpy values converged to 0 J/g. 

To determine the 𝑇g values of different cross-linking levels of EMC, both DSC and TMA 

measurements are used which rely on different principles. Thus, a comparison of 
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present in the DSC curves after 𝑇g r EMC 55s | 170°C  ~ 110 °C. For the almost fully cured 

EMC after PMC, the value 𝑇′g EMC  ~ 177 °C is acquired from TMA measurements. 

Since the experimental parts are molded with the cycle time 𝑡mold = 65 s, the glass 

transition temperature for that point is roughly estimated as 𝑇g(r) EMC 65s | 170°C  ~ 120 °C 

via linear interpolation through the measured values with the rough asssumption of 

𝑇′g EMC is reached after 110 s. As an additional information, the CTE values of 

𝛼1 = 8.73 µm/(m.°C) and 𝛼2 = 22.50 µm/(m.°C) are also acquired for glassy and gel 

states of fully cured EMC respectively.  

Looking at the results from PCB measurements, no exothermic peaks were visible in 

the DSC curves, but an increase in average glass transition temperature was seen 

from the value 𝑇g(r) PCB~165 °C before PMC to 𝑇′g(r) PCB~175 °C after PMC. This 

indicated the presence of curing reactions in PCB substrate, which was considered to 

be at its fully cured state when delivered from the manufacturer. Even though only the 

cross-linking density of EMC is taken into consideration as a quality criterion for 

package reliability, the curing characteristics of PCB and its effects on warpage might 

be regarded as a future field of study. 

4.2 Results from Post-mold Cure Experiments 

This chapter presents and interprets the results acquired from the post-mold cure 

experiments which are described in Chapter 3.3.3. Starting with presenting the results 

about PMC effects on warpage in Chapter 4.2.1, these results are interpreted in 

Chapter 4.2.2. Following these, the results acquired from FTIR spectroscopy 

measurements are explained in Chapter 4.2.3.  

4.2.1 Results on Warpage 

As mentioned in Chapter 3.3.2, the warpage measurements for the parts are 

conducted before and after PMC operations. For sake of simplicity, only the results 

from the sample groups A and B, which are produced with the same parameters, are 

discussed to explain the effects of different PMC parameters on their final warpages.  

Figure 4.6 shows the measured warpage values of the samples before and after PMC 

operations with different parameters. As seen, even though the parts were produced 

with the same molding parameters, the fluctuation in their initial warpage values (𝛿0) is 
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relatively high due to instabilities in the machine. The manual operation of molding 

process considering raw material placements and part ejections is also another 

contributing factor to these deviations in 𝛿0. The effects of the failure in the machine, 

which is shortly mentioned in Chapter 3.3.1, can also be seen when the 𝛿0 values from 

both sample groups are compared. There is a large increase in 𝛿0 values of the 

samples from group B, even though the main molding parameters are kept the same. 

Due to this large difference, a direct comparison of the samples from the groups A and 

B were not possible. The small increase in average 𝛿0 for the samples 76-87 is caused 

since a new batch of the same PCB substrates is used for that interval.  

 

Figure 4.6: Measured warpage values of sample groups A and B 

Looking at the values after PMC, it can be seen that PMC decreased warpage in all 

the samples with different PMC parameters. But, as the warpage value after PMC is 

also dependent on 𝛿0 value of the part, the fluctuated pattern is present in the final 

warpage 𝛿′ values as well, which makes it hard to compare these numerical values 

and to correlate a pattern in between them and the PMC parameters used. Due to 

these challenges in evaluating the numerical 𝛿′ values, the warpage reduction rate in 

percentage is used to compare the effects of different PMC parameters on warpage. 

The mentioned warpage reduction rates of the samples are calculated via 

Δ𝛿𝑋𝑡PMC

𝑇PMC =
(𝛿0 −  𝛿′X𝑡PMC

𝑇PMC )

𝛿0
× 100 (4.1) 

where 𝛿0 and  𝛿′X𝑡PMC

𝑇PMC  are the warpage values in microns before and after PMC 

respectively. The upper and lower indices 𝑇PMC and 𝑡PMC on the left side indicate the 
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PMC temperature and PMC time used for the sample, and the lower index X on right 

specifies the group that the sample belongs to. As there are at least 3 parts in a sample 

group that are post-mold cured with the same parameters, the mean value of their 

reduction rates is taken into consideration during evaluations.  

Figure 4.7 shows the average Δ𝛿 values acquired after post-mold curing the samples 

from Sample Group A with the parameter set given in Table 3.2. The error bars indicate 

the standard deviations in Δ𝛿 values. As seen, with varying 𝑇PMC and 𝑡PMC, different Δ𝛿 

values are observed. Looking at the values for Δ𝛿A 
170 °C , a peak can be seen at 

 Δ𝛿A10 min
170 °C  ~ 58 % which then shows a decreasing trend as 𝑡PMC increases further. On 

the other hand, considering the measurement and production related tolerances, the 

fluctuations in Δ𝛿A 
160 °C  and Δ𝛿A 

150 °𝐶  in the time interval of 10 – 60 minutes can be 

assumed as more or less a constant trend which does not show a clear increase or 

decrease unlike Δ𝛿A 
170 °C . After 60 minutes, the decreasing Δ𝛿A 

170 °C  reaches to the 

same level with other samples and follows a linear pattern until 180 minutes. 

Afterwards, another drop is seen at  Δ𝛿A240 min
170 °C  to ~ 28 %. 

 

Figure 4.7: Average warpage reduction rates of samples from Group A 

Figure 4.8 shows the average Δ𝛿 values of the samples from Sample Group B, which 

are post-mold cured with the parameter set shown in Table 3.2, with the aim of 

investigating a larger interval for 𝑇PMC = 150 °C and the effects of a higher a 𝑇PMC value 

of 185 °C. Due to different 𝛿0 values of Sample Groups A and B, a small control group 

with 𝑇PMC = 170 °C is included in Group B to compare with Δ𝛿A 
170 °C . Starting with 

comparing the control groups Δ𝛿A 
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20 – 60 minutes in both figures, a difference in Δ𝛿 values can be seen. Despite these 

differences, a similar pattern is present in both Δ𝛿A 
170 °C  and Δ𝛿B 

170 °C  which decreases 

with increasing 𝑡PMC. Moreover, Δ𝛿B 
185 °C  shows the same pattern as Δ𝛿A 

170 °C  with a 

peak at 𝑡PMC= 10 min, which is followed by a decreasing slope and then a stay in almost 

in the same values until 𝑡PMC = 180 min. When compared with Δ𝛿B 
185 °C , Δ𝛿B 

170 °C  yields 

better reduction rates in the time interval they are compared. Just like Δ𝛿A 
150 °C , 

Δ𝛿B 
150 °C  has an almost constant Δ𝛿 value over the time span until 180 minutes. The 

decrease at 𝑡PMC = 240 min is then present for both Δ𝛿B 
150 °C  and Δ𝛿B 

185 °C , but the 

decrease in Δ𝛿B 
150 °C  is smaller when compared to Δ𝛿B 

185 °C . 

 

Figure 4.8: Average warpage reduction rates of samples from Group B 

4.2.2 Interpretation of Results on Warpage 

In the light of the results presented in previous chapter, this chapter explains the 

effecting mechanisms behind warpage reduction during PMC and reasons the different 

warpage reduction rates after different PMC parameters. 
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the molded area as shown in Figure 4.9 (a). Figure 4.9 (b) illustrates the thermal 
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temperature 𝑇mold to room temperature 𝑇room after molding. Step 0 is the moment that 
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components, it can be seen that the shrinkage Δ𝑙EMC is larger than Δ𝑙PCB, which causes 

a concave warpage formation when cooling from Step 0 to Step 1 as shown in 

Figure 4.9 (c). 

 

 Figure 4.9: Warpage formation after molding a) part geometry and the reference 
length 𝑙 b) shrinkage graph for EMC and PCB c) warpage modes just after ejection 

(0) and when cooled down to room temperature (1) 

Figure 4.10 illustrates the warpage states during a PMC operation, which is conducted 

at 𝑇PMC ~ 𝑇mold for a PMC time that suffices for an almost fully cured state of EMC but 

not for the full cure of the PCB substrate. Starting from Step 1 which was introduced 

above, the part temperature is elevated again. As a result of this increase in 

temperature, the concave warpage starts to decrease as the EMC expands more than 

the PCB substrate and leads to a decrease in Δ𝑙 as illustrated in Step 2. Once 𝑇g EMC 

is reached during heating, the previously formed residual stresses in EMC are relaxed 

as a result of the transition from the glassy state to gel state as shown in Step 3. The 

similar stress relaxation effect happens again when 𝑇g PCB is reached as in Step 4. 

When the PMC temperature 𝑇PMC is reached at Step 5, the temperature is kept 
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PCB increase, and both components shrink chemically as a result of further cross-link 

formations. Due to fast curing behavior, EMC reaches a highly cross-linked structure 

at Step 6 and its glass transition temperature converges to 𝑇PMC, leading to a 

stagnation in its curing reaction due to vitrification. The curing and chemical shrinkage 

of PCB on the other hand, continues until Step 7, which stands for the end of the PMC 

time after which the part is taken out of the oven. As EMC has a larger chemical 

shrinkage in the end of PMC, the concave warpage is increased in Step 7 in 

comparison to Step 5. As a result of the increased 𝑇g values of 𝑇′g EMC and 𝑇′g PCB, both 

materials shrink less while cooling back to room temperature for the second time. Due 

to this mechanism, the final warpage at Step 8 is relatively smaller when compared to 

Step 1 since Δ𝑙’ is smaller than 𝛥𝑙. 

 

Figure 4.10: Warpage states during post-mold curing 

With reference to above mentioned mechanisms acting during PMC, the results can 

be interpreted in a more meaningful way. Figure 4.11 summarizes warpage reduction 

rates acquired from sample groups A and B, and divides them into three intervals 

according to patterns seen in 𝛥𝛿 curves.  
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Figure 4.11: Intervals with different warpage reduction patterns 

The first intervals of both groups consist of the range in which 𝛥𝛿 curves show both 

decreasing and constant trends depending on their 𝑇PMC values. To begin with, the 

different values but same patterns for the control groups Δ𝛿A 
170 °C  and Δ𝛿B 

170 °C  can be 

explained with the different 𝛿0 values of both groups, which was shown in Figure 4.6. 

This difference with the same pattern shows that the Δ𝛿 value is also dependent on 𝛿0. 

The peaks in the curves with 𝑇PMC values 170 °C and 185 °C in this interval can be 

explained via the stress relaxation of PCB substrates when they are post-mold cured 

with temperatures above 𝑇g PCB = 165 °C (see Figure 4.10 (4) for reference). For 𝑇PMC 

values smaller than 𝑇g PCB, this effect cannot be utilized. Therefore, the samples with 

𝑇PMC values smaller than 𝑇g PCB have smaller warpage reduction values within the first 

interval. Looking at the earliest point  Δ𝛿A5 min
170 °C  in the same interval, it can be inferenced 

that due to the time needed for the part to heat up after being placed in the oven, the 

part could not reach 𝑇g PCB yet. That means the PMC operation stopped in a point in 

between (1)-(4) in Figure 4.10, therefore ended up with a lower 𝛥𝛿. Narrowing down 

the focus only on the curves with a 𝑇PMC larger than 165 °C in first interval, a decreasing 

𝛥𝛿 pattern can be seen until 𝑡PMC = 60 min. This decrease happens due to further 

curing of the PCB substrate at the temperatures above 𝑇g PCB. An increase in 𝑇′g PCB 

decreases the thermal shrinkage of PCB substrate due to earlier transition into glassy 

state with a lower CTE value. Therefore, assuming a state in which 𝑙′EMC has reached 

its maximum value due to maximized 𝑇′g EMC, a larger 𝑙′PMC leads to a larger Δ𝑙′ value 

in concave warpage modes and ends up with a larger warpage value (see Figure 4.10 

Step 8 for reference). After 60 minutes of PMC time, the advantages of stress 
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relaxation in PCB substrate are neutralized due to this mechanism. The values for 

Δ𝛿 
𝑇PMC>𝑇g PCB

 are decreased almost to the same levels with the curves Δ𝛿
𝑇PMC<𝑇g PCB

. 

As next, the focus is switched on the second interval in which the Δδ curves show an 

almost constant behavior throughout the whole span. At this interval, both EMC and 

PCB cure reactions are stagnated for the curves Δ𝛿𝐴 
170 °𝐶  and Δ𝛿𝐵 

185 °𝐶 , therefore no 

major effects related to chemical shrinkage or 𝑇g shift are present. The small 

fluctuations might be due to the measurement and operation related tolerances and 

instabilities. For 𝛥𝛿B
150 °𝐶  on the other hand, the PCB cure is not reacted due to low 

temperature, and the cure reaction of EMC is again stagnated. The mentioned 

stagnation in cure reactions might be due to two main reasons: reaching the full 

cross-linking density in materials, or the occurrence of the vitrification phenomenon in 

which the material transforms into glassy state during curing due to 𝑇′g value reaching 

𝑇PMC and causes a sudden decrease in reaction speed as introduced in Chapter 2.1.6.  

Following the stabilized rates observed in the second interval, a decreasing Δ𝛿 trend 

was seen for all the sample groups within the third interval. When the PCB substrates 

are examined, a change in their color was seen as shown in Figure 4.12 which indicate 

a degradation in PCB substrate that leads to a higher part warpage. In the substrates 

that are post-mold cured at 185 °C for 240 minutes, a relatively sharp change in color 

was seen, whereas the color change was not that obvious for the samples with 

𝑇PMC = 150 °C, which shows an accordance with the values  Δ𝛿B240 min
185 °C  and  Δ𝛿B240 min

150 °C . 

 

Figure 4.12: Color change in PCB substrates after PMC operations with different 
temperatures and times 

Summarizing the results, it was seen that the maximum warpage reduction is reached 

after 10 minutes of PMC for the tested EMC encapsulants at the temperatures slightly 

higher than 𝑇g PCB. Further increase in 𝑇PMC ended up with decreased warpage 

reduction performance. Similarly, increased 𝑡PMC yielded lower warpage reduction 
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rates and even led to thermal degradation of the substrates. These results showed that 

the PMC operations conducted in industry for long PMC times (> 4h) can be optimized 

for lower final warpage values of the packages and a much faster PMC operation. 

Having lower PMC times and lower PMC temperatures, the cost per product is 

decreased as well while having a better quality in terms of package warpage. For the 

sample geometry and materials used in the experiments, the results showed that the 

optimal PMC parameters should be selected in a way that suffices for a full cure of 

EMC but prevents further curing of PCB substrate.  

4.2.3 Results on Infrared Spectra 

Even though investigating the cure behavior of EMC is not the focus point of this thesis, 

the cross-linking density of the encapsulant material is a major concern of PMC 

operations in general. Therefore, it should also be considered at some extend for PMC 

parameter optimization concerns as mentioned in Chapter 3.4. This chapter presents 

the IR spectra acquired from the ATR-FTIR Spectroscopy measurements for EMC 

material which are conducted before and after PMC. Looking at the differences in IR 

spectra, it is aimed to correlate the changes in chemical composition of the material 

with the changes in cross-linking density during PMC. 

 Figure 4.13 shows the IR spectra from EMC encapsulants of the molded samples 

before and after PMC operations at 170 °C for 30 minutes (a) and 120 minutes (b). As 

seen, the small changes in spectra are difficult to observe visually. Therefore, the 

detection of spectral changes is left to the machine learning algorithm.  

 

Figure 4.13: IR Spectra of EMC before and after PMC operations with a) 170 °C and 
30 min b) 170 °C and 120 min 
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4.3 Results from Machine Learning Algorithm 

After presenting and explaining the results acquired from the PMC experiments, the 

results from the machine learning model are shown and discussed in this Chapter. 

With reference to Figure 3.15, the reliability of the whole optimization cycle is 

dependent on the accuracies of predicted warpage and reaction enthalpy values. 

Therefore, to begin with, the outputs from warpage regression tool are presented and 

interpreted in Chapters 4.3.1 and 4.3.2 respectively. Similarly, the results for enthalpy 

regression are shown in Chapter 4.3.3, and then discussed in Chapter 4.3.4. Following 

them, Chapter 4.3.5 shows the predictions for optimal PMC parameters and 

Chapter 4.3.6 evaluates and reasons the results acquired from the whole optimization 

model. 

4.3.1 Results from Warpage Regression 

Being the focus point of the optimization algorithm, the predicted warpage values are 

presented, and prediction accuracy of the warpage regression tool is assessed in this 

chapter. As introduced in Chapter 3.4.2, an Artificial Neural Network is built to predict 

the final warpages 𝛿′ of the samples with the inputs of initial warpage 𝛿0 and initial IR 

spectrum 𝐼𝑅0 before PMC, and the PMC parameters 𝑇PMC and 𝑡PMC. Figure 4.14 

shows the data points that are used for training the warpage regression tool. Even in 

a simplified 3D domain that does not contain the features from IR spectra, no clear 

patterns on final warpages are present for visual inspections.  

 

Figure 4.14: Data points used for training the warpage regression tool 
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To fit a pattern to above given scattered data points, different ANN architectures, 

learning rates and activation functions are tested for their accuracies as listed in 

Table 4.1. To assess their accuracies, their mean absolute error (MAE) values are 

calculated using Equation (2.5), with the values of measured and predicted final 

warpages. Looking at the MAE values, the parameter set ANN 2 is selected with the 

hidden layer structure of 150 : 90 : 40 neurons to be used in the model. The learning 

rate 1 x 10−3 yielded the best result in comparison to other values tested. ReLU is used 

as the activation function due to its computational simplicity and slightly better results 

achieved with it.  

Table 4.1: Tested ANN structures and their resultant mean absolute errors 

Parameter 
set 

Hidden 
layers 

Learning 
rate 

Epochs 
Activation 
Function 

MAE in µm 

ANN 1 150 : 90 : 40 1 x 10−4 5000 ReLU 14.11  

ANN 2 150 : 90 : 40 1 x 10−3 5000 ReLU 12.01 

ANN 3 150 : 90 : 40 1 x 10−2 5000 ReLU 17.28 

ANN 4 100 : 60 : 25 1 x 10−3 5000 ReLU 15.85 

ANN 5 50 : 30 : 10 1 x 10−3 5000 ReLU 17.84 

ANN 6 150 : 90 : 40 1 x 10−3 5000 sigmoid 12.33 

The test samples are randomly selected amongst the samples from the PMC 

experiments and excluded from the train set. The final warpages of these samples are 

predicted using the initial measurements for warpage and IR spectrum, and the PMC 

parameters that are applied to them. The predicted values 𝛿′pred are then compared 

with the measured values 𝛿′ after their PMC operations in real-life. Figure 4.15 shows 

the measured and predicted final warpage values of the test samples. 

 

Figure 4.15: Comparison of measured and predicted final warpage values 
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4.3.2 Interpretation of Results from Warpage Regression 

To begin with evaluating the ANN parameters, it can be seen in Table 4.1 that the 

predictions got better as the complexity of hidden layer architecture increases. Having 

more weights and biases increased the model’s ability to have better fits to nonlinear 

patterns. On the other hand, having more complex networks increases the 

computational costs. For the applications with large data sets, this is an important 

aspect to be considered. Since the data set used in this thesis is relatively small, the 

computational cost is not considered. The learning rate of 1 x 10−3 yielded the best 

results in comparison to other values tested. This is mostly due to stagnating in a local 

minimum point of the loss function with the learning rate of 1 x 10−4, and overshooting 

the optimal point with the learning rate of 1 x 10−2.  

The prediction accuracy of the selected ANN architecture with a MAE of 12.01 µm 

stands for only 3.4 % error with respect to average measured 𝛿′ value of 348 µm for 

the samples. Considering the 10 µm tolerance of the 3D Profilometer which was used 

for warpage measurements, the predictions showed a high accuracy despite the 

relatively low number of data points used for model training. These results showed that 

the usage of machine learning based methods for predicting the final warpage yields 

good results despite the manufacturing related tolerances and deviations of the parts, 

due to its allowances on including these uncontrollable and unmeasurable 

disturbances in the fitted pattern as well.  

4.3.3 Results from Enthalpy Regression 

Despite not being the main optimization concern in context of this thesis, the 

cross-linking density of the EMC had to be considered as a quality criterion as well 

since the main goal of PMC operations in general is reaching higher cross-linking 

densities. Therefore, using the residual reaction enthalpy values as a measurable 

indicator of cross-linking density, an enthalpy regression function is implemented in the 

optimization model, which predicts the residual reaction enthalpies as introduced in 

Chapter 3.4.3. This Chapter presents the results acquired from the enthalpy regression 

function which consists of two different subfunctions, to predict the initial and final 

residual reaction enthalpies of the samples as shown in Figure 3.14. 
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Before starting with presenting the predictions for EMC encapsulant, it should be 

remembered that the enthalpy prediction function was partly trained with an external 

data set that consists of DSC and ATR-FTIR measurements of pressed EMC samples 

with different cross-linking densities as mentioned in Chapter 3.4.1. Using the same 

ANN structure as the one used for warpage predictions, a model is created with a MAE 

of 1.27 J/g within the same external data set.  

Since the model is trained with an external data set but not with the molded parts, its 

accuracy for molded parts should also be tested. To do so, the reaction enthalpy values 

of the molded DSC samples that are mentioned in Chapter 4.1.1 are predicted via their 

IR spectra using the first subfunction of the enthalpy regression tool (see Figure 3.14 

for reference), and then compared with their DSC measurements. Figure 4.16 shows 

the measured and predicted reaction enthalpies plotted over molding time, with the 

error bars indicating the standard deviations in the DSC measurements. As seen, the 

predicted values show a similar pattern with the measured values, with a sudden 

decrease until the mold cycle time 110 s, and then a stagnation almost in the constant 

values throughout the whole span. An offset can be seen in between both curves, 

which becomes more stable and larger after 100 s. The overall MAE value is 0.67 J/g 

for the test interval of 55 s – 300 s. Since no parts could be produced with cycle times 

less than 55 s due to limitations on EMC solidification as mentioned in Chapter 3.3.1, 

the model could not be tested with molded samples with higher residual reaction 

enthalpies.  

 

Figure 4.16: Predicted and measured reaction enthalpy values for EMC 
encapsulants of the molded parts 
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As the next step after assessing the accuracy of enthalpy prediction function, reaction 

enthalpies of the molded samples from PMC experiments are predicted for their states 

before and after PMC. The initial residual reaction enthalpies (ℎ0) of the parts are 

predicted through their initial IR spectra (𝐼𝑅0) using the first subfunction of enthalpy 

regression tool (see Figure 3.14 for reference). Referencing Chapter 4.2.3, no 

observable changes in IR spectra before and after PMC were present for visual 

investigations. To test if the machine learning algorithm is able to detect those minor 

changes, the final reaction enthalpies (ℎ’) are also predicted using the same 

subfunction but with the input of final IR spectra (𝐼𝑅′). Figure 4.17 shows the predicted 

reaction enthalpy values before and after PMC, plotted over the corresponding sample 

numbers. As seen, the model was able to correlate the small changes in between 𝐼𝑅0 

and 𝐼𝑅′ with the cross-linking densities and predicted lower ℎ′ values for 𝐼𝑅′. But, since 

no 𝐼𝑅′ data will be available in real life applications before PMC, the second subfunction 

is used which predicts for ℎ’ values with the inputs of 𝐼𝑅0, 𝑇PMC, 𝑡PMC as explained in 

Chapter 3.4.3 (see Figure 3.14 for reference). Comparing the ℎ′pred values acquired 

from both models, it can be seen that both were able to respond to increasing 

cross-linking densities in a meaningful way and predict lower values for ℎ’. 

 

Figure 4.17: Average predicted reaction enthalpy values of molded parts before and 
after PMC 
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4.3.4 Interpretation of Results from Enthalpy Regression 

After showing the prediction results for reaction enthalpies, this chapter interprets and 

explains the results. Starting with the first predictions shown in Figure 4.16, a similar 

pattern was seen in both measurements and predictions. The increased offset in 

between the curves after 100 s is mainly due to external train data which does not 

include many data points with really low reaction enthalpy values, which means that 

the algorithm was not trained with enough amount of spectra with almost ~0 J/g. 

Therefore, it was not able to predict accurately for the samples which converge to 0 J/g 

in their DSC measurements. The overall MAE value is calculated as 0.67 J/s, which 

stands for a good accuracy when compared with the tolerances of DSC method on 

measuring reaction enthalpies (up to 3 J/g). 

Looking at Figure 4.17, meaningful predictions were made for reaction enthalpy values 

before and after PMC operation. Both methods to predict for ℎ’ yielded similar results 

with similar patterns, but the predicted ℎ0 pred values fluctuated a lot. One main reason 

for these fluctuations in ℎ0 pred is the manual molding operations. Even though a high 

attention was paid to conduct all the molding operations as equally as possible, 

unavoidable fluctuations in raw material placement and part ejection times might have 

ended up with different cross-linking densities due to fast curing behavior of the EMC 

material used. And since the molding machine is located in a workshop but not in a 

controlled laboratory, the small ambient changes might have minor effects on the 

cooling process as well when the parts are left for cooling in the ambient conditions 

after being ejected. The changes in ℎ0 pred values can therefore be mostly reasoned 

by combination of these difficulties. 

Looking at the predicted ℎ′pred values on the other hand, despite having different PMC 

parameters, all the predictions for different samples are more or less in the same levels 

since the EMC has already reached its almost fully cross-linked structure in the first 10 

minutes of the PMC. Due to insufficient train data, the predictions were not able to 

converge to 0 J/g as mentioned above. This fast-curing behavior makes the algorithm 

hard to utilize for optimizing the cross-linking densities for the used EMC material. But, 

it can be seen that the fluctuations in predicted values are diminished once all the 

samples have the same cross-linking densities (their fully cured states in this case), 
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which shows the reproducibility and stability of the function once the above-mentioned 

production related tolerances are minimized.  

To sum up, the reaction enthalpy predictions showed that the method is promising as 

it was able to detect small spectral changes that occur during PMC and make 

meaningful predictions for the decreasing final reaction enthalpies via PMC parameters 

and initial IR spectra. But, the fast curing behavior of the EMC material used in the 

experiments was a major limiting factor both for creating train data and producing 

molded test samples with different cross-linking densities. Therefore, no clear 

observations could be made for different PMC parameters and their effects on spectral 

changes to be correlated with the cross-linking densities. The use of a such prediction 

model for materials that have slower cure behaviors would yield more beneficial results 

and could be used in scenarios in which the effects of different PMC parameters on 

cross-linking density of the material could be investigated in a larger process window. 

4.3.5 Results from Optimization Model 

As described in Chapter 3.4.4, having the measured initial part warpage and IR 

spectrum of an EMC encapsulant, the machine learning model aims to predict the 

optimal PMC parameters that will yield the desired part warpage and EMC 

cross-linking density after the operation. As explained in Chapter 3.4.4, the 

optimization is done iteratively via predicting the final part warpage and final reaction 

enthalpy value of EMC encapsulant after PMC, with the cooperation in between 

regression functions and the optimization tool as illustrated previously in Figure 3.15. 

Following the chapters that present the prediction results and assess the accuracies 

of the mentioned regression functions, this chapter introduces the results acquired 

from the whole machine learning model for optimization. 

Starting with setting the user defined parameters of the algorithm, the weights of quality 

and efficiency terms should be determined first to be used for the cost function that 

was introduced in Equation (3.2). There are no standard methods to determine the 

optimal weights as it highly depends on how the cost function was defined and how it 

is used in the algorithm. Therefore, the weights are determined in a trial-and-error 

manner, with the logic of having the cost function affected more by the important terms, 

and less by the terms of lower importance. In this case, warpage and PMC time are 

classified as the important terms since the main goal is to decrease them both. The 
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learning rate η and the momentum β terms are again determined through several tries 

to avoid overshooting or stagnating in irrelevant local minimum points. The limit Δ for 

the cost difference in between two iterations is defined, which stops the loop once the 

Δ gets smaller than the defined limit. Table 4.2 lists the selected parameters for 

optimization model. 

Table 4.2: Parameter set used for optimization model 

𝒘𝜹 𝒘𝒉 𝒘𝑻 𝒘𝒕 η β Δ 

1.2 0.02 0.01 1.2 5 x 10−5 0.1 1 

Using the program defined with the above given parameter set, the prediction of 

optimal PMC parameters for a random sample from the Sample Group B is tested. 

Table 4.3 shows the properties of the tested sample, such as its measured initial 

warpage 𝛿0, predicted initial reaction enthalpy ℎ0 pred, the PMC parameters that are 

applied to the sample during the experiments, and the resultant values 𝛿′ and ℎ′ 

acquired after its PMC operation in real life. For testing reasons, the desired values for 

quality criteria are set as 𝛿′desired = 300 μm and ℎ′desired = 2 J/g, and the optimization 

cycle is then tested to predict for the optimal PMC parameters that would yield the 

desired values. To test the model’s stability, different iteration start points 𝑇0 itr. for PMC 

temperature and 𝑡0 itr. for PMC time are used in different optimization tests. 

Table 4.3: Predictions for optimal PMC parameters of a test sample  

Properties of test sample 

𝜹𝟎 𝒉𝟎 𝐩𝐫𝐞𝐝 𝑻𝐏𝐌𝐂 𝒕𝐏𝐌𝐂 𝜹′ 𝒉′𝐩𝐫𝐞𝐝 

573 μm  3.93 J/g 185 °C 180 min 433 μm 1.54 J/g 

Desired quality criteria 

𝜹′𝐝𝐞𝐬𝐢𝐫𝐞𝐝 300 μm 𝒉′𝐝𝐞𝐬𝐢𝐫𝐞𝐝 2 J/g 

Optimization tests 

Parameters (1) (2) (3) (4) 

𝑻𝟎 𝐢𝐭𝐫. 150 °C 185 °C 150 °C 185 °C 

𝒕𝟎 𝐢𝐭𝐫. 0 min 240 min 0 min 240 min 

𝑻𝐏𝐌𝐂 𝐨𝐩𝐭. 204 °C 237 °C 174 °C 174 °C 

𝒕𝐏𝐌𝐂 𝐨𝐩𝐭. 0 min 0 min 15 min 15 min 

𝜹′𝐩𝐫𝐞𝐝 310 μm 279 μm 341 μm 341 μm 

𝜟𝜹𝐩𝐫𝐞𝐝 45.8 % 51.3 % 40.6 % 40.6 % 

𝒉′𝐩𝐫𝐞𝐝 3.6 J/g 3.2 J/g 1.8 J/g 1.8 J/g 

iterations # 2885 3499 723 1092 
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Looking at the results for optimization tests (1) and (2) at Table 4.3, it can be seen that 

the model predicted the optimal parameters as 𝑇PMC opt. = 204 °C and 𝑡PMC opt. = 0 min 

for test (1), and 𝑇PMC opt. = 237 °C and 𝑡PMC opt. = 0 min for test (2). After seeing that the 

model was not able to detect the boundary condition for 𝑡PMC = 0 min as no PMC state, 

artificial data points are added to train set in order to define important boundary 

conditions for no PMC condition 𝑡PMC = 0 min, or safety limit for electronic components 

𝑇PMC = 200 °C. It was aimed to increase the cost towards these regions with dummy 

data so that the algorithm does not try to exceed them while iterating. The predictions 

are then repeated after training the warpage regression tools with the extended data 

set. As seen in tests (3) and (4), despite starting their iterations from different points, 

both (3) and (4) ended up with the same PMC parameters 𝑇PMC opt. = 174 °C and 

𝑡PMC opt. = 15 min, and predicted the same values ℎ′pred = 1.8 J/g and 𝛿′pred = 341 μm, 

which corresponds to a warpage reduction rate of 𝛥δ𝐵 15 min
174 °C = 40.6 %. Figure 4.18 

shows the predicted optimal point for the tested sample and the results acquired from 

the PMC experiments of Sample Group B, in which the tested sample belongs to. 

 

Figure 4.18: Comparison of predicted optimal point with experimental results  
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iterated PMC parameters are shown, as well as the calculated cost for the 

corresponding steps in the most bottom subplot. The iterations were started from the 

values 𝑇0 itr. = 185 °C and 𝑡0 itr. = 240 min as defined in Table 4.3, and after each 

iteration these parameters are updated in the direction of reducing cost.  

 

Figure 4.19: Iteration steps from a) optimization test (2) without dummy data and b) 
optimization test (4) with dummy data 
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minimize the cost which was defined as in Equation (3.2). Similarly, due to these 

insufficiencies, the predicted reaction enthalpy values showed no clear accordance 

with the expected pattern.  

To overcome this training related issues, artificial points such as  𝛥δ 0 min
170 °C = 0 % or 

 𝛥δ 10 min
200 °C = 0 % added to train data to define the important boundary conditions. When 

the dummy points are also included in train set, the predictions got much more accurate 

as seen in Figure 4.19 (b). The iterated 𝑇PMC value is first decreased rapidly from 

185 °C to ~30 °C and then slowly increased to 174 °C. The iterated 𝑡PMC 
 followed a 

constantly decreasing trend until 𝑡PMC = 15 min and then stagnated. The predicted 

𝛿′pred values are decreased with decreasing 𝑡PMC to the value 341 μm in the end. The 

corresponding warpage reduction rate at the predicted optimal point 𝛥δ𝐵 15 min
174 °C = 40.6 % 

showed an accordance with the patterns seen in experimental values as previously 

shown in Figure 4.18. Even though the desired warpage value of 300 μm could not be 

reached due to limitations of PMC on warpage reduction, an optimal parameter set is 

suggested that yields the closest possible value to that. 

Looking at ℎ′pred values, the predictions were higher when the iterated 𝑇PMC was 

decreased to ~ 30 °C, which is below 𝑇g EMC. Since no curing is expected at that 

temperature, having the predicted ℎ′pred value close to initial value ℎ0 pred showed that 

the algorithm was able to fit a reasonable pattern for reaction enthalpy predictions. 

With increasing iterated 𝑇PMC, the predicted ℎ′pred value decreased. When the iterated 

PMC parameters that suffice for an almost full cure of EMC are reached, the 

predictions are stagnated more or less in the same levels. That means, once the 

required 𝑇PMC is reached during iterations, all the iterated steps corresponded to almost 

fully cross-linked states since all the iterated 𝑡PMC values were above 10 min, which 

suffices for a full cure of EMC. And even though the expected reaction enthalpy value 

was 0 J/g for these fully cured states, the model could not converge to that point due 

to insufficiencies in train data as explained in detail in Chapter 4.3.4, and stagnated in 

1.5 – 2 J/g interval which stands for the minimum prediction offset as previously shown 

in Figure 4.17. 

These results pointed out one weakness of ANN algorithms: despite being able to fit 

accurate patterns to nonlinear data distributions, it is still a challenge for an ANN 

algorithm to make good predictions for the data regions which are outside their train 
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ranges. As an example, the warpage regression tool showed a good accuracy with a 

MAE of 12.01 μm for the PMC parameters which were used in the train data that was 

created via PMC experiments. But when the model is asked to predict for PMC 

parameters which are outside its train range during the iterations for optimization, the 

prediction accuracy got worse. Then, when the dummy data are included in train set, 

the predictions got much more accurate. These results showed that once the required 

train data is available, the ANN is a proper method that can yield reliable predictions 

for such tasks. To achieve this, task specific boundary conditions had to be defined 

which pointed out the need for having a large amount of train data from different 

provenances, feature regions and boundaries, which makes the use of ANN costly for 

many applications. 

To sum up, despite the low amount of train data, the optimization model was able to 

find the optimal PMC parameter region once the important boundary conditions were 

defined with artificial points. The predicted warpage values showed an accordance 

with the experiment results. And the predictions for residual reaction enthalpies 

showed a decreasing pattern as expected, but predictions with high accuracies could 

not be reached due to insufficient training. The fast-curing nature of the used EMC 

material was a major limitation on this due to challenges of manually producing 

samples with different post-mold cure durations in such limited time windows. Due to 

these issues, the cross-linking density of EMC could not be properly implemented in 

the optimization algorithm as a limiting criterion. With the use of different encapsulant 

materials with slower cure behaviors, the suggested methodology can be tested for 

more complex optimization problems.  
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5 Conclusion & Outlook 

In this thesis, the effects of post-mold cure (PMC) process on warpage of electronic 

packages are investigated. The real-life industrial PMC operations have the main goal 

of reaching full cross-linking densities of thermoset encapsulants in general, and 

therefore mostly conducted at the same elevated temperatures (~175 °C) for long 

times (> 4h). But the effects of different PMC parameters on warpage are not well 

known. Focusing on this lack of process knowledge, the aim of this study was to 

investigate the effects of PMC operation on warpage and to optimize PMC parameters 

accordingly. To do so, PMC experiments are conducted with different PMC 

temperatures and times, and a machine learning based optimization algorithm is 

created using the data acquired from these experiments. Warpage is considered as 

the main quality criterion to optimize the PMC parameters for, and the cross-linking 

density is also regarded as the secondary optimization concern since it is the main 

goal of PMC operations in general. 

Experiments are conducted with molded samples that consist of two main components, 

namely the EMC encapsulant and PCB substrate. To characterize their thermal and 

cure behaviors, DSC and TMA measurements are conducted. The DSC 

measurements showed that the main encapsulant material EMC has a fast cure 

reaction so that it reaches an almost fully cross-linked structure after molding for 110 s 

at 170 °C. The glass transition temperature of raw EMC is evaluated as ~42 °C, and it 

increased to ~177 °C after reaching its full cross-linking density. The reaction enthalpy 

values acquired from DSC measurements are used as a measurable indicator of EMC 

cross-linking density. The externally supplied PCB substrates were assumed to be 

finished products at their fully cured states in context of this work prior to their DSC 

measurements. But DSC measurements revealed the cure reactions in glass epoxy of 

PCB substrate, with an increase in glass transition temperature from ~165 °C to 

~175 °C during the PMC operations.  

During PMC experiments, different PMC temperatures (𝑇PMC) and PMC times (𝑡PMC) 

are tested to investigate their effects on part warpage. The results showed that the 

PMC operations decreased the warpage in all the samples due to decreased thermal 

mismatch in between EMC and PCB substrate. It was also observed that selecting the 

𝑇PMC values above 𝑇g PCB ~ 165 °C had an improving effect for warpage reduction by 
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benefiting the stress relaxation in PCB substrate as a result of transitioning into its gel 

state. However, longer 𝑡PMC ended up with worse results for part warpage when 𝑇PMC 

was above 𝑇g PCB. The reason behind this pattern was found to be the PCB curing. This 

pointed out that the optimal PMC parameters are also dependent on the possible 

curing of the substrates in the package, other than the main encapsulant material. With 

all the mentioned considerations, the results showed that the PMC parameters for this 

material set should be selected in a way that it suffices for the full cross-linking density 

of EMC but hinders further curing of PCB substrate to reach a maximum reduction in 

warpage. Since the samples are heated without conductive heat transfer in a fan oven 

during PMC, the additional time needed to heat the sample from 𝑇room to 𝑇PMC caused 

a relatively large difference in 𝑡PMC and 𝑡mold values required to reach full cross-linking 

densities. The parameter set 𝑇PMC = 170 °C and 𝑡PMC = 10 min yielded the best results 

in terms of warpage reduction for the materials and part geometry used in the 

experiments, which are molded with 𝑇mold = 170 °C and 𝑡PMC = 65 s. 

As the next step, it was aimed to detect the changes in IR spectra before and after 

PMC, and then correlate these changes with further cross-linking of the material during 

PMC as a non-destructive method to evaluate cross-linking density. But, no clear 

changes were detected in IR spectra before and after PMC via visual inspections and 

further investigations are tested via the machine learning algorithms.  

To predict the final part warpage, and also the final reaction enthalpy as an indicator 

of EMC cross-linking density, machine learning based regression functions are created 

using artificial neural network (ANN) algorithms as described in Chapter 3.4. The 

predicted warpage values had the mean absolute error (MAE) of only 12.01 μm for the 

test points that are randomly selected amongst the samples from PMC experiments. 

The enthalpy predictions showed an accuracy of 0.67 J/g in MAE and the model was 

able to detect the differences in between the IR spectra before and after PMC, which 

was not detectable with visual inspections. The decreases in reaction enthalpies after 

PMC were successfully predicted. As a major limiting factor regarding this point, due 

to fast-curing behavior of the EMC material, it was not possible to properly observe the 

changes in cross-linking density of EMC within a very limited time window for PMC. As 

a result, the studies on cross-linking density as a function of PMC parameters could 

not be properly implemented in the model since all the samples that are post-mold 

cured have reached their almost full cross-linking densities even after 𝑡PMC of 
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10 minutes. Therefore, the predicted final reaction enthalpy values were always in the 

same levels for all the PMC parameters tested in the experiments. 

The optimization of PMC parameters is done iteratively using the above-mentioned 

regression functions. Despite the assessed prediction accuracies in their train 

intervals, when the regression functions were asked to predict for iterated PMC 

parameters which are outside their train ranges, the prediction results for final warpage 

and enthalpy got worse. Thus, the predicted optimal PMC parameters did not show 

any accordance with the observations from the experiments. This pointed out one 

major weakness of ANN algorithms, that they require large amount of train data from 

different feature regions and sample provenances. To overcome this issue, artificial 

data points are included in the train data to define some important boundary conditions 

as described in Chapter 4.3.5. With the extended train data, the prediction quality for 

optimal PMC parameters improved and converged to parameters of 𝑇PMC = 174 °C and 

𝑡PMC = 15 min which showed an accordance with the results acquired from the 

experiments. With larger train data from different parameter regions, one can expect 

predictions which show better accordance with the real-life applications. 

As an outlook, a detailed inspection of PCB substrate curing and its effects on resultant 

part warpage is left as an open field of research for future studies. Package designs 

with more than two thermosetting components would lead to different aspects for 

further investigations on effecting mechanisms and design related optimization 

concerns. The fast-curing nature of the EMC material used in this study led to a 

relatively simple optimization problem, in which the optimal points for both warpage 

reduction and process costs were in the same direction of decreasing PMC time. 

Further studies on the materials with much slower cure behaviors might therefore find 

answers to more complex optimization problems, in which the elongated 𝑡PMC needs 

for desired EMC cross-linking density also contributes to cost. Furthermore, studies on 

such materials would also allow further investigations regarding the relationship in 

between the IR spectra and cross-linking densities before and after PMC. To improve 

the prediction accuracies, different machine learning algorithms such as reinforcement 

learning can be used to overcome the limitations of supervised methods for predicting 

for the values that are outside their train ranges.
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A1 Methodology for Updating Efficiency Terms 

This appendix explains the gradient descent method used for updating the iterated 

efficiency terms during post-mold cure parameter optimization, as a supplementary 

document to Chapter 3.4.4. Figure A1.1 shows the extended flow chart for the machine 

learning model that predicts the quality terms and optimizes the post-mold cure 

parameters accordingly. As seen, the reference values 𝑇0 itr. and 𝑡0 itr. for iteration start 

points, optimization weights 𝑤𝛿 , 𝑤ℎ, 𝑤𝑇 , 𝑤𝑡 and iteration parameters are fed to the model 

by the user, along with the measured initial and desired values for warpage and reaction 

enthalpy. 

 

Figure A1.1: Extended flowchart for optimization tool 

Figure A1.2 illustrates the steps followed during updating the iterated efficiency terms. 

As the first step, the final warpage and final reaction enthalpy predictions 𝛿′pred and ℎ′pred 

are made for the defined iteration start parameters 𝑇0 itr. and 𝑡0 itr., and the reference cost 

for that point is calculated using Equation (3.2). Following that, if the predicted values for 

warpage and reaction enthalpy are not in accordance with the desired values, an artificial 

experiment set is created via variating the parameters with the user defined value 𝜅 as 

shown in Step 2. Then, using 𝐼𝑅0 and 𝛿0, and also the artificial PMC parameters, the 

resultant 𝛿′ and ℎ′ values are predicted, followed by the calculation of costs for each one 

of these points. As next, in Step 5, a simple ANN is built that fits a relationship in between 

the calculated costs and the variated PMC parameters, with the goal of detecting the 
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changes in cost as a response to variations in the PMC parameters. After training this 

dummy network, the assigned weights indicate how strongly and in which direction these 

iterated PMC parameters affect the resultant cost. Having the assigned weights at Step 6 

the iterated PMC parameters are updated in the direction of decreasing costs using the 

gradient descent method, which is introduced in Chapter 2.2.4 with Equation (2.10). The 

predictions for 𝛿′ and ℎ′ are repeated, and the new reference cost is calculated for the 

updated parameters. As the termination condition, the absolute difference of reference 

costs are compared with the termination limit 𝛥, which is defined as a value that indicates 

a stagnation in updated iterations. If the difference is below this limit, it is assumed that 

the predictions are converged to a value and the loop is terminated. If not, the loop is 

started again from Step 2, with the updated reference points. 

 

Figure A1.2: Flowchart for updating iterated efficiency terms 
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