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ABSTRACT 

 
Prediction of Gait Kinetics from Joint Angles Using Machine Learning in Patients with 

Cerebral Palsy 

  

Joint moment and ground reaction force (GRF) during gait provide valuable 

information for clinical decision-making in patients with cerebral palsy (CP). Joint moments 

are calculated based on GRF using inverse dynamics models. Obtaining GRF from patients 

with CP is challenging. Typically developed (TD) individuals' joint moments and GRFs 

were predicted from joint angles using machine learning (ML), but no such study has been 

conducted on patients with CP. Accordingly, we aimed to predict the vertical GRF, dorsi-

plantar flexion, knee flexion-extension, hip flexion-extension, and hip adduction-abduction 

moments based on the trunk, pelvis, hip, knee, and ankle kinematics during gait in patients 

with CP and TD individuals using one-dimensional convolutional neural networks. The 

anonymized retrospective gait data of CP and TD subjects were used. The data were 

collected in the course of patient care over the last two decades in the Department of 

Orthopedics and Traumatology of Heidelberg University. For broadening the ML study, we 

trained specific ML models of ridge regression, random forest, multilayer neural network, 

k-nearest neighbour, long short term memory neural network algorithms by using manually 

extracted time domain features and automatically generated features of gait kinematics. 

Their performances were evaluated and compared using isolated test subject groups based 

on normalized root mean square error (nRMSE) and Pearson correlation coefficient (PCC). 

Joint moments were predicted with nRMSE between 18.02% and 13.58% for the CP and 

between 12.55% and 8.58% for the TD groups, whereas with PCC between 0.90 and 0.96 

for the CP and between 0.96 and 0.99 for the TD groups. GRF was predicted with an nRMSE 

of 7.47% for TD subjects and 11.75% for CP subjects, while with a PCC score of 0.98 for 

the TD and 0.94 for the CP group. ML algorithms using time domain features and 

automatically generated features showed similar performance. ML-based joint moment 

prediction from kinematics could replace conventional moment calculation in CP patients in 

the future, but the current level of prediction errors restricts its use for clinical decision-

making today. 

 

 

Keywords: Machine Learning; Cerebral palsy; Gait; Ground reaction force; Joint 

moment. 
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ÖZET 

Serebral Palsili Hastalarda Makine Öğrenmesi Kullanarak Eklem Açılarından Yürüme 

Kinetiğinin Kestirilmesi 

 

Serebral palsili (SP) hastalarda yürüme sırasında eklem momentleri ve yer reaksiyon 

kuvveti (YTK), klinik karar verme sürecinde değerli bilgiler sağlar. Eklem momentleri, ters 

kinematik modeller kullanılarak YTK'ne dayalı olarak hesaplanır. SP'li hastalardan YTK 

elde etmek zorlu bir süreçtir. Sağlıklı bireylerde eklem momentleri ve YTK'leri, makine 

öğrenmesi (MÖ) kullanılarak eklem açılarından tahmin edilmiştir, ancak SP'li hastalar 

üzerinde böyle bir çalışma henüz yapılmamıştır. Bu nedenle, bu çalışmada SP'li hastalarda 

ve sağlıklı bireylerde yürüme sırasında gövde, pelvis, kalça, diz ve ayak bileği kinematiği 

temel alınarak dikey YTK, dorsi-plantar fleksiyon, diz fleksiyon-ekstansiyon, kalça 

fleksiyon-ekstansiyon ve kalça addüksiyon-abdüksiyon momentlerinin bir boyutlu 

konvolüsyonel sinir ağları kullanılarak tahmin edilmesi amaçlandı. SP ve sağlıklı deneklerin 

anonimleştirilmiş geriye dönük yürüme verileri kullanıldı. Veriler, Heidelberg Üniversitesi, 

Ortopedi ve Travmatoloji Bölümü'nde son yirmi yıl içinde hastaların klinik çalışmaları 

sırasında toplanmıştır. MÖ çalışmasını genişletmek için, yürüme kinematiğinin zaman alanı 

özniteliklerinin manuel ve otomatik olarak çıkarılması yöntemleri kullanılarak ridge 

regresyon, rastgele karar ormanı, çok katmanlı sinir ağı, k-en yakın komşu, uzun-kısa süreli 

bellek sinir ağı algoritmalarının özelleştirilmiş MÖ modelleri eğitildi. Performansları, 

normalize edilmiş karesel ortalama hata (nKOH) ve Pearson korelasyon katsayısı (PCC) 

kullanılarak izole edilmiş test örneği gruplarında değerlendirildi ve karşılaştırıldı. Eklem 

momentleri, SP grubu için %18,02 ila %13,58 arasında nKOH ve sağlıklılar grubu için 

%12,55 ila %8,58 arasında nKOH ile tahmin edildi, SP grubu için 0,90 ila 0,96 arasında 

PCC ve sağlıklılar grubu için 0,96 ila 0,99 arasında PCC ile tahmin edildi. YTK, sağlıklı 

bireyler için %7,47 nKOH ve SP’li hastalar için %11,75 nKOH ile tahmin edildi, sağlıklılar 

grubu için 0,98 PCC ve SP grubu için 0,94 PCC ile tahmin edildi. Makine öğrenimi 

algoritmaları, manuel ve otomatik çıkarılmış öznitelikleri kullanarak benzer performans 

sergiledi. Makine öğrenimine dayalı eklem momenti tahmini, SP’li hastalarda geleneksel 

moment hesaplamanın yerine geçebilir, ancak mevcut düzeydeki tahmin hataları, klinik 

karar vermede bugün kullanımını sınırlamaktadır. 

Anahtar Sözcükler: Makine öğrenmesi; Serebral palsi; Yürüyüş; Yer tepki kuvveti; Eklem 

momenti. 
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1. INTRODUCTION 

1.1 Background  

Cerebral Palsy (CP), which is characterized by a variety of neurological and motor 

impairments, encompasses a diverse group of disorders that significantly impact an 

individual's neuromotor functions. The most obviously disordered neuromotor function 

of CP patients is their natural walking, namely gait.   

 

Gait analysis, recognized as a valuable adjunctive tool in the realm of clinical decision-

making, holds a crucial role in the assessment and management of various neurological 

and musculoskeletal conditions. Its primary objective is to identify and characterize gait 

abnormalities, providing healthcare professionals with comprehensive insights into an 

individual's walking pattern.. Additionally, gait analysis serves as a reliable means to 

continually monitor and evaluate the progress and effectiveness of treatment 

interventions implemented over time, facilitating a more personalized and targeted 

approach to patient care [1]-(Baker, 2013). 

 

Motion capturing encompasses a comprehensive technology that enables to acquire a 

substantial volume of high-dimensional 3D kinematics and kinetics data during gait. 

This wealth of information is obtained through meticulous post-processing of images 

captured by precisely calibrated cameras and sensors. By harnessing the power of 

advanced imaging technology, gait analysis facilitates the acquisition of precise and 

detailed measurements, enabling healthcare professionals to gain deeper insights into 

the intricate biomechanics of an individual's walking pattern [2]-(Halilaj et al., 2018). 
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In clinical settings, the 3D data acquired through motion capturing is used for gait 

analysis in order to derive kinematic and kinetic data of the subject. Human body models 

like Plugin Gait Model (Oxford Metrics, Oxford, UK) is used for this purpose. The main 

kinematic information gathered in gait analysis is joint angles.  

 

1.2 Problem and importance of the problem  

In addition to the joint angles in evaluating, tracking, and managing CP, particular 

attention is also directed towards the ground reaction force (GRF) and joint moments. 

Joint moment is a significant gait parameter as it plays a pivotal role in the 

comprehensive assessment, ongoing monitoring, and effective therapeutic interventions 

for individuals affected by CP [3,4,5,6,7]-(Lai et al., 1988; Gage, 1994; Ounpuu et al., 

1996; Lin et al., 2000; Novacheck and Gage, 2007). 

 

Ground reaction force (GRF) stands as a distinctive and essential kinetic parameter 

within the realm of gait analysis. What sets GRF apart is its ability to be directly 

measured through experimental means. By employing force plates clinicians can 

precisely capture the forces exerted between the foot and the ground during walking or 

running. This direct experimental measurement of GRF plays a crucial role in 

unraveling the intricate biomechanics of human locomotion, providing valuable insights 

into the distribution, timing, and magnitude of forces acting on the body.  

 

The joint moments offer tremendous potential in unraveling the intricate dynamics of 

muscle behaviors during joint motion exertion. Notably, research has demonstrated that 

the analysis of joint moments, both pre- and postoperatively, assumes a crucial role in 
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informing the decision-making process regarding the treatment of CP. Specifically, the 

examination of joint moments within the sagittal plane of the lower extremities, as well 

as the hip joint moment within the frontal plane, has been shown to exert a significant 

influence on treatment strategies [5,8,9,10]-(Ounpuu et al., 1996; De Luca et al., 1997; 

Kay et al., 2000, Rhodes et al., 2023). By incorporating these valuable insights, 

healthcare professionals are equipped with a more comprehensive understanding of the 

biomechanical intricacies underlying CP, enabling them to make informed and 

personalized decisions to optimize the treatment outcomes for individuals affected by 

this condition. 

 

A prominent example of the significance of joint moments in clinical decision-making 

lies in the context of crouch gait observed in patients with CP. In this case, the 

insufficient strength of the quadriceps muscle group emerges as a primary contributing 

factor [11]-(Lenhart et al., 2017). Consequently, the magnitude and pattern of the knee 

extension moment play a pivotal role in reflecting the impact of quadriceps weakness 

on crouch gait. The careful analysis of these knee extension moments assumes critical 

importance when making surgical decisions for individuals presenting with CP and 

crouch gait. By thoroughly evaluating the knee extension moments, healthcare 

professionals gain crucial insights into the extent of quadriceps weakness, enabling them 

to make informed surgical choices aimed at addressing this specific issue and optimizing 

the gait biomechanics and functional outcomes for patients affected by CP [11,12]-

(Lenhart et al., 2017; Karabulut et al., 2021). 
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Joint moments also provide crucial information about the joint mechanics that may be 

contributing to gait abnormalities in patients and for tailoring surgical interventions to 

address specific issues and improve gait mechanics. For instance, if a patient with CP 

exhibits excessive knee flexion during the stance phase of gait, surgical interventions 

such as lengthening the hamstrings or transferring the rectus femoris can be carried out 

to improve knee extension [10]-(Rhodes et al., 2023). Similarly, if a patient exhibits 

excessive hip adduction during the stance phase of gait, surgical interventions such as 

pelvic osteotomy or soft tissue release can be carried out to improve hip alignment and 

reduce the risk of hip dislocation [30]-(Miller, 2020). 

 

Obtaining joint moments and ground reaction forces in clinical gait analysis leads to 

challenges. The measurement of ground reaction force (GRF) presents inherent 

challenges when attempting to capture it during natural walking [13]-(Caldas et al., 

2020). Furthermore, these difficulties are compounded when dealing with deviated 

gaits, particularly in cases of CP [14]-(White et al., 1999). The complexity lies in 

accurately quantifying GRF in real-time while individuals exhibit variations in gait 

patterns, such as altered foot placements and asymmetrical weight distribution. Such 

deviations pose significant obstacles to obtaining precise and reliable GRF 

measurements.  

 

On the other hand, the calculation of joint moments necessitates the utilization of GRF 

measurements. By employing the principles of inverse dynamics, the forces and 

moments acting on the body segments can be determined based on the measured GRF 

data [15,16]-(Winter, 2009; Whittle, 2014). This computational approach allows for the 
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computation of the joint moments at various joints throughout the body, providing 

valuable insights into the dynamic forces and torques experienced during different 

phases of the gait cycle. In addition to the problematic acquisition process of GRF 

measurements, these models are not perfect and especially far from being so for widely 

varying CP cases.  

Machine Learning (ML) has emerged as a powerful tool in addressing various 

challenges, especially when dealing with tasks that involve missing measurements or 

the absence of comprehensive physical models. ML techniques excel in leveraging 

patterns, correlations, and underlying structures within data to make predictions, 

classifications, and decisions. 

In situations where measurements are missing or incomplete, ML algorithms can 

effectively analyze the available data and uncover hidden relationships. By training on 

existing data, ML models can learn patterns and generalize from them, enabling them 

to make informed predictions or fill in missing information. This ability to handle 

missing measurements is particularly valuable when dealing with complex systems or 

scenarios where data collection might be limited or challenging. 

 

Furthermore, ML can be applied when there is a lack of well-defined physical models. 

Instead of relying solely on explicit equations or models, ML algorithms can learn from 

data to infer relationships, capture nonlinearities, and make accurate predictions. This 

flexibility makes ML a versatile tool for solving problems across various domains, from 

image and speech recognition to natural language processing and complex system 

optimization. 
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By harnessing the power of ML, researchers and practitioners can overcome the 

limitations posed by missing measurements or the absence of physical models. ML 

enables them to leverage available data effectively, uncover hidden patterns, and make 

reliable predictions or decisions, thus contributing to advancements in fields where 

traditional approaches may fall short.  

 

1.3 Aim and importance of the study  

The exploration of predicting GRF during gait using (ML) techniques has been an active 

research area. One of the pioneering attempts in this field dates back to 2013, where 

conventional ML algorithms were employed for GRF prediction based on kinematics 

[17]-(Oh et al., 2013). Subsequently, other studies have further expanded on this 

research, investigating statistical approaches [18]-(Johnson et al., 2018) as well as deep 

learning algorithms utilizing motion capture data [19]-(Mundt et al., 2020a) and 

incorporating spatio-temporal information [20]-(Johnson et al., 2018). 

 

ML algorithms have also been successfully applied to patients with CP, a condition 

characterized by non-uniform gait characteristics. Researchers have leveraged ML 

techniques for various tasks, including the detection of CP disease using video 

recordings [21]-(Ihlen et al., 2020) or gait kinematics [22]-(Zhang and Ye, 2019), as 

well as the classification of gait phases in CP patients using electromyography (EMG) 

[23]-(Morbidoni et al., 2021) or marker data [24]-(Kim et al., 2022). These applications 

demonstrate the potential of ML in assisting with the diagnosis, assessment, and 

classification of gait abnormalities in CP patients, providing valuable insights for 

clinical decision-making and personalized treatment interventions. 
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With the typically developed (TD) subjects, a few attempts have been made to predict 

joint moments using ML during gait. For example, the above mentioned study of Mundt 

et al. not only predicts the GRF but also the joint moments of TD subjects successfully 

using kinematic data from three-dimensional motion capture by employing feed-

forward neural networks and long short-term memory neural networks [19]-(Mundt et 

al., 2020a). Another study published by Ardestani et al. introduced a wavelet neural 

network that considered frequency information to predict joint moments of TD subjects 

using both kinematic and EMG data [25]-(Ardestani et al., 2014). 

 

This highlighted a research gap and presented an opportunity for the investigations in 

this thesis to apply ML techniques to predict GRF and joint moments in individuals with 

CP, which will enhance clinicians’ understanding of CP’s gait mechanics and contribute 

to personalized treatment interventions. 

 

In this thesis, our main objective was to predict i) GRF and specific joint moments, 

including dorsi-plantar flexion, knee flexion-extension, hip flexion-extension, and hip 

adduction-abduction moments, using joint angles derived from marker data during gait 

in patients with CP. 

 

Furthermore, we aimed to compare the performance of different input-algorithm settings 

for predicting these variables. The input sets comprised various types of kinematic 

information such as kinematic features and kinematic signals, and we carefully selected 

and developed appropriate conventional and deep ML algorithms accordingly. By 

exploring different combinations of input data and ML algorithms, we aimed to identify 



 

8 

 

the most effective approach for predicting the GRF and joint moments in patients with 

CP during gait. 

Such a comprehensive analysis allowed us to evaluate and compare the predictive 

capabilities of different input variables and ML techniques. The findings from this study 

would contribute to advancing our understanding of the relationships between kinematic 

information, GRF, and joint moments in CP patients, and provide valuable insights into 

the optimal approaches for predicting these parameters. 

 

1.4 Original contributions  

To the best of our knowledge, prior to this thesis and the associated publications, no 

other study has specifically focused on predicting GRF or joint moments in patients with 

CP using ML algorithms. The prediction of such kinetic parameters in CP patients 

during gait represents a novel and important research area, as it can provide valuable 

insights into their biomechanical characteristics and aid in clinical decision-making. 

By conducting this thesis and the associated publications, we addressed the existing 

research gap and contribute to the field by exploring the prediction of GRF and joint 

moments in CP patients. The unique challenges posed by CP, including non-uniform 

gait characteristics, require specific attention and tailored approaches for accurate 

prediction. Therefore, our work represents an important contribution to the 

understanding and application of ML techniques in the context of CP gait analysis. 

The results and findings obtained from this thesis and the associated publications will 

help advance the knowledge and understanding of gait mechanics in CP patients, paving 

the way for future research and clinical applications in this area. The identification of 

effective prediction models and approaches for GRF and joint moments can have 

significant implications for treatment planning, rehabilitation strategies, and 
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personalized interventions for individuals with CP. 

 

1.5 Organization of the Thesis 

There are three concluded works within this thesis, namely 

 Study I: Predicting ground reaction forces using one-dimensional convolutional 

neural network based on kinematics during gait in patients with cerebral palsy (paper in 

preparation). 

 Study II: Deep learning-based prediction of joint moments based on kinematics in 

patients with cerebral palsy (published: Ozates, Musta Erkam, et al. "Machine learning-

based prediction of joint moments based on kinematics in patients with cerebral palsy." 

Journal of Biomechanics (2023): 111668.) 

 Study III: Predicting joint moments in patients with cerebral palsy using deep and 

various conventional machine learning methods (paper in preparation). 

The thesis is organized in the same order both in methodology and results sections.  

   

 

 

 

 

 

 



 

10 

 

2. MATERIALS AND METHODS  

2.1 Subjects 

The studies involved in this thesis received ethical approval from the local ethical 

committee of the University Hospital of Heidelberg (S-227/2021), ensuring that it 

adhered to the necessary ethical guidelines and considerations. For the research, a 

comprehensive dataset of gait data was utilized, consisting of anonymized retrospective 

information. The dataset included 329 TD subjects with typical gait characteristics and 

917 patients with CP. The TD subjects had an average age of 26 years (±14), a mass of 

70kg (±15), and a height of 167cm (±89). On the other hand, the CP patients had an 

average age of 17 years (±9), a mass of 47kg (±19), and a height of 153cm (±36). The 

data was obtained from routine patient care, ensuring a real-world and clinically 

relevant context. 

 

To capture the kinematic information, the Plugin Gait Model (Oxford Metrics, Oxford, 

UK) was utilized, which involved the placement of 19 markers on the subjects. The data 

was captured using a 12-camera motion capture system (Vicon Motion Systems Ltd., 

Oxfordshire, UK) while the subjects walked at their self-selected speed. 

Simultaneously, GRF data was collected using force plates (Kistler Instruments, 

Winterthur, Switzerland). To calculate joint moments, an inverse kinematics model, 

based on the work by Harrison et al. was employed [26]-(Harrison et al., 2012). These 

joint moments were then normalized by the body mass of the individuals, allowing for 

standardized comparisons. 

 

The inclusion criteria for the TD and CP subjects did not involve specific age or gender 
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requirements. For the TD subjects, those who walked barefoot and had complete 

measurements were included in the study, as depicted in Figure 1 of the flowchart.  

 

 

Figure 2.1: Inclusion/exclusion flow of the typically developed subjects. GRF: Ground 

reaction force 

 

As for the CP subjects, their first visits were considered, and only those who were able 

to walk without assistive devices and had complete measurements were included, as 

illustrated in Figure 2 of the patient flowchart. Notably, the Gross Motor Function 

Classification System (GMFCS) levels of the included CP patients were limited to 

levels I and II. 

After applying inclusion–exclusion criteria, 132 TD and 622 CP patients with spastic 
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diplegia were selected. 

 

Figure 2.2: Inclusion-exclusion flow of the subjects with cerebral palsy. GRF: Ground 

reaction force 

 

By utilizing this comprehensive dataset and implementing stringent inclusion criteria, 

the study aimed to ensure accurate and representative results, contributing valuable 

insights into the prediction of GRF and joint moments in both TD individuals and those 

with CP. 
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2.2 Data gathered from the subjects 

A comprehensive set of kinematic and kinetic data was collected for analysis in this 

study. The kinematic data encompassed measurements from various body segments, 

including the trunk, pelvis, hip, knee, and ankle, in three planes of motion (sagittal, 

coronal, and transverse). This resulted in a total of 15 angles that were considered. 

Furthermore, the kinetic data included GRF, flexion-extension moments of the ankle, 

knee, and hip, as well as the adduction-abduction moment of the hip. 

 

To ensure reliable and representative results, the data from each subject was averaged 

across 7-10 strides. This averaging process helped to minimize any potential variability 

and provided a more robust representation of the individual's gait pattern. Additionally, 

the data was normalized to a percentage gait cycle, where each time series consisted of 

101-time points representing the entire gait cycle, ranging from 0% to 100%. 

 

In addition to the averaged time series, the dataset also included the standard deviations 

of the time series throughout the individual strides. This information provided 

information of the variability of the kinematic and kinetic parameters within each gait 

cycle. 

 

To further refine the analysis, the time series were segmented into stance and swing 

phases based on the temporal foot-off values. Since GRF data were not available during 

the swing phase, only the stance phases of the time series were utilized. This allowed 

for the inclusion of directly measured GRF and directly calculated moment data during 
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the periods when the foot was in contact with the ground. 

 

By incorporating this comprehensive dataset of kinematic and kinetic measurements, 

along with the appropriate segmentation (stance and swing phases), the study is 

designed to use the most appropriate data in prediction of GRFs and joint moments 

during the gait cycle. These considerations ensured that the study focused on relevant 

and meaningful data, contributing to a more accurate learning of the biomechanical 

aspects of gait in both TD individuals and those with CP.  

 

2.3 Predicting ground reaction forces using one-dimensional convolutional neural 

network 

As mentioned above, this study of the thesis aimed to predict the GRF during gait 

without requiring force plates to measure it. The subjects and data explained above in 

Sections 2.1 and 2.2 are used for this study.  

 

Figure 2.3: Force platform, embedded in the ground, used in measurement of ground 

reaction force [27]   
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2.3.1 Pre-processing 

To ensure uniformity in the data size for training the ML algorithms, a standardized 

length of 60-time points was established for the stance segments of the time series. Since 

each subject may have a different duration of stance time, a standard interpolation 

technique was employed to adjust the time series to this standardized length. This 

interpolation process allowed for consistent data size across all subjects, facilitating the 

ML training process. 

 

Furthermore, to ensure fair and unbiased learning, all time series values, regardless of 

their unit or magnitude, were normalized within the range of 0 to 1. This normalization 

technique prevented any particular time series with higher magnitudes from dominating 

the learning process. By scaling the values within a standardized range, the ML 

algorithms could effectively analyze and compare the patterns and relationships within 

the data. 

 

Following the normalization step, the 15 kinematic time series, along with their 

corresponding standard deviations, were organized and stacked into a matrix format. 

This matrix, namely the input matrix, had 30 rows, representing 15 time series and their 

associated standard deviations, and 60 columns, corresponding to the standardized 

length of the stance segments. This matrix format allowed for a structured and consistent 

representation of the data. 

 

In total, 132 matrices were created for training and testing the ML process in the case 

of TD subjects, while 622 matrices were generated for patients with CP. These matrices 
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served as the input data for the ML algorithms, enabling the learning and prediction of 

GRFs and joint moments based on the kinematic information. 

 

By standardizing the data size, normalizing the values, and organizing the time series 

into matrices, the study aimed to establish a consistent and compatible format for the 

ML algorithms to process the gait data effectively. This approach ensured that each 

subject's data contributed equally to the training and testing processes, facilitating 

accurate predictions of GRFs and joint moments in both TD individuals and those with 

CP. 

  

2.3.2 Machine learning approach 

To effectively process the time series data and capture distinct features from each time 

series, a one-dimensional convolution neural network (1D-CNN) model was utilized. 

The 1D-CNN model employs convolutional layers specifically designed for processing 

sequential data, such as the joint angles in our case. These convolutional layers extract 

features from the time series data by considering different temporal ranges, enabling the 

model to capture valuable information relevant to predicting another time series' data, 

in our case, the GRFs and the joint moments [28,29]-(Hua et al., 2020; Malek et al., 

2018). 

 

During the initial experimentation phase, various network sizes were assessed using a 

separate development set. As the number of convolutional and densely connected layers 

increased from a basic architecture comprising only one of each, there was a gradual 

decrease in the calculated loss on the development set. The hyperparameters that best 
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suited the selected network size were determined. It became clear that further increasing 

the model's complexity did not yield significant improvements, but it considerably 

increased the computational demands. So, the complexity of the 1D-CNN model was 

manually defined to ensure optimal performance. The model's complexity was 

gradually increased until no significant decrease in loss, a measure of prediction error, 

was observed. This iterative process allowed for fine-tuning the model's architecture 

and finding the optimal balance between complexity and performance. To determine 

the model's effectiveness, a separate development set comprising 42 patients with CP 

was used to evaluate the model's performance, making adjustments until the desired 

accuracy and predictive power were achieved. 

 

By incorporating the 1D-CNN model into the analysis, the study aimed to leverage its 

ability to extract meaningful features from the time series data, thereby enhancing the 

prediction accuracy of joint moments based on the corresponding joint angles. The 

iterative optimization process ensured that the model's complexity was tailored to the 

specific task, maximizing its effectiveness in capturing the intricate relationships and 

patterns within the gait data of patients with CP. The details of the designated 1D-CNN 

model as well as the evaluation metrics is explained below in Section 2.4 as similarly 

used for Study II, including Figure 2.5 showing the pipeline of the data processing and 

ML.  

 

2.4 Deep learning-based prediction of joint moments based on kinematics in 

patients with cerebral palsy 

As mentioned above, the thesis aimed to predict the dorsi-plantar flexion, knee flexion-
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extension, hip flexion-extension, and hip adduction-abduction moments of patients with 

CP during gait without requiring inverse dynamics models, which is used to calculate 

joint moments based on GRFs measured by force plates. The subjects and data explained 

in Sections 2.1 and 2.2 were used in this study. The ML approach explained for Study I 

in Section 2.3.2. was followed. In the end, one 1D-CNN model was designed and used 

for both studies, namely Study I (Predicting ground reaction forces using one-

dimensional convolutional neural network based on kinematics during gait in patients 

with cerebral palsy) and Study II (Deep learning-based prediction of joint moments 

based on kinematics in patients with cerebral palsy)  explained in Sections 2.3 and 2.4.  

 

2.4.1 Designed one dimensional convolutional neural network model  

The designated 1D-CNN model utilized in the study consisted of five convolutional 

layers, each with a specific number of filters and 1D kernel sizes. These convolutional 

layers had the following numbers of filters: [128, 128, 512, 1024, 2048]. The 

corresponding 1D kernel sizes for these layers were [30, 15, 10, 5, 3]. This configuration 

was chosen to gradually extract features over decreasing time intervals, as the ascending 

number of filters and decreasing filter sizes allowed for capturing more detailed 

information at finer time resolutions. 

 

After the output of the convolutional layers was flattened, ten densely connected layers 

were employed. These layers consisted of varying numbers of neurons, specifically 

[10000, 8000, 6000, 4000, 3000, 2000, 1000, 500, 250, 100]. The descending number 

of neurons in these layers was chosen to transform the information to the desired output 

size throughout the learning process. By using this architecture, the model was able to 
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effectively learn and extract meaningful features from the input data. 

 

To introduce non-linearity and enhance the model's learning capabilities, a rectified 

linear unit (ReLU) activation function was applied to all layers. Additionally, a dropout 

layer with a 1% dropout fraction was attached to the output of each layer to prevent 

over-fitting. The final output layer, which was densely connected, employed a linear 

activation function and had a neuron size of 60, corresponding to the number of time 

points in the stance phase of the interpolated joint moment time series. 

 

During the learning process, the stochastic gradient descent (SGD) algorithm was used 

as the optimization algorithm with a learning rate of 0.01. The loss criterion for 

evaluating the training performance was based on the root mean squared error (RMSE) 

and Pearson correlation coefficient (PCC) between the experimental and predicted time 

series. The implementation of the 1D-CNN algorithm was carried out using Keras on 

the Tensorflow framework. 

 

To assess the model's performance and ensure robustness, a 10-fold cross-validation 

algorithm was employed. The dataset was divided into ten equal parts, with nine parts 

used for training and one part for testing in each fold. Range normalization was applied 

separately to the training and testing sets to prevent any information leakage between 

them. Each subject was included in only one of the ten subsets to avoid over-fitting the 

model to specific walking patterns. 
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2.4.2 Avoiding over-fitting 

To monitor the training process and detect over-fitting, learning curves were plotted, 

comparing the decrease in loss on the training set to that of an isolated test set. The 

training process was limited to 500 epochs for each split, with batches of size 32. This 

approach allowed for effective training and evaluation of the model's performance while 

preventing over-fitting and ensuring generalizability. 

Throughout the training phase, the model's parameters were adjusted via back 

propagation exclusively using the training set's loss, without any modifications to the 

hyper parameters. Consequently, the test set remained separate from the training process 

and served the sole purpose of evaluating potential over-fitting. The validation set, also 

known as the "development set," ceased to be utilized once the model was established. 

The learning curves demonstrated that notable over-fitting did not occur on the training 

set, as the loss on the test set decreased concurrently (though to a lesser extent) with the 

loss on the training set at each epoch. 

 

Figure 2.4 shows the learning curve for the training of the model for ankle dorsi-plantar 

flexion moment as an example. The x-axis shows the number of epochs, while the light 

blue line represents the loss for the test set and the dark blue line shows the loss for the 

training set. The curve has been smoothed using the exponential moving average 

algorithm to provide an easy-to-interpret overall shape while retaining the actual loss 

values as a faded background. 
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Figure 2.4: The learning curves plotted for the training of the model for the ankle dorsi-

plan flexion moment 

 

The detailed data processing and ML pipelines used in the study were given in Figure 

2.5, providing a comprehensive overview of the methodology employed to predict 

GRFs and joint moments in patients with CP during gait. 
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Figure 2.5: Data processing and machine learning pipeline. GRF: Ground reaction 

force, JM: Joint moment, AF: ankle dorsi-plantar flexion moment, KF: knee flexion-

extension moment, HF: hip flexion-extension moment, HA: hip adduction abduction 

moment, CNN: convolutional neural network, SGD: stochastic gradient descent, 

nRMSE: normalized root mean square error, PCC: Pearson correlation coefficient. 
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2.4.3 Evaluation Metrics 

The evaluation of the predicted joint moment time series involved the utilization of two 

widely recognized metrics: the normalized root mean square error (nRMSE (%)) and 

the Pearson correlation coefficient (PCC). These metrics have gained widespread 

acceptance in the field as reliable measures for assessing the accuracy and performance 

of ML algorithms in predicting joint moments, as evidenced by previous studies [19, 

25,31,32] (Mundt et al., 2020a; Ardestani et al., 2014; Mundt et al., 2020b; Ripic et al., 

2022). 

 

The nRMSE metric quantifies the normalized magnitude difference between the 

predicted and experimental joint moment time series at each time point. nRMSE was 

calculated by dividing the RMSE value by the mean range of the experimental joint 

moment (𝜇𝑅𝑜𝑀) across all subjects of the same group as stated in Equation (1). In the 

equation, 𝐽𝑀𝑃 and 𝐽𝑀𝐸  denote predicted and experimental joint moments, respectively. 

Sub-indices P and E denote predicted and experimental quantity, respectively. 

 

𝑛𝑅𝑀𝑆𝐸 = √
𝛴𝑛(𝐽𝑀𝑃−𝐽𝑀𝐸)2

𝑛
/ 𝜇𝑅𝑜𝑀      (1) 

 

The Pearson correlation coefficient (PCC) metric calculates the degree of pattern 

similarity between the experimental and predicted joint moments, providing a 

quantitative measure of their correlation and alignment [33]-(Savelberg and Herzog, 

1997), in which cross-covariance  (𝑐𝑜𝑣(𝐸, 𝑃)) of them and variance of each of them 

(𝝈𝐸 , 𝝈𝑃) respectively were used (Equation (2)). 
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𝑃𝐶𝐶 =
𝑐𝑜𝑣(𝐸,𝑃)

𝝈𝐸𝝈𝑃
        (2) 

 

In order to address the issue of strong skewness in the distribution of the Pearson 

correlation coefficient (PCC) values, we employed Fisher's Z transformation. This 

transformation serves to normalize the PCC values, making the distribution more 

symmetric and suitable for statistical analysis. By applying the transformation, we were 

able to alleviate potential biases and achieve a more robust assessment of the correlation 

between the experimental and predicted joint moments. The transformed PCC values 

were then used to compute the mean, which was computed based on these normalized 

values. To interpret the results in the original PCC scale, we reversed the transformation 

by applying the inverse of Fisher's Z transformation, following a well-established 

approach outlined in the reference [34]-(Silver et al., 1987). This ensured that the final 

PCC values accurately reflected the pattern similarity between the experimental and 

predicted joint moments, providing a reliable measure of their association. 

 

2.5 Predicting joint moments of patients with cerebral palsy using deep learning 

and various conventional machine learning methods 

In this phase of the study, our objective was to design and evaluate various input-

algorithm configurations to predict joint moments. We focused on constructing different 

input sets that encompassed the same range of kinematic information. Specifically, two 

sets of inputs 

i) one for deep learning including row kinematic time series  

ii) one for conventional ML algorithms that is composed of manually extracted 

features 
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were constructed for the prediction of the ankle dorsi-plantar flexion moment.  

It is worth noting that conventional ML algorithms tend to be more straightforward to 

train when the provided information is relevant and representative. In other words, when 

the input features accurately capture the essential characteristics of the data, 

conventional algorithms are typically better equipped to learn and make accurate 

predictions. Therefore, in this study, careful consideration was given to selecting and 

constructing input sets that encompassed pertinent and meaningful information from the 

kinematic data, aiming to enhance the training process and optimize the performance of 

the ML models. 

 

Deep learning, in contrast, has the ability to automatically create and extract its own 

features from the input data. It does not rely on handcrafted features like conventional 

ML approaches. By doing so, deep learning models can explore a much wider solution 

space, allowing them to capture complex patterns and relationships in the data. 

 

However, deep learning algorithms typically require a larger amount of data to 

effectively learn these complex representations. With a substantial amount of data 

available for training, deep learning models can leverage their capacity to learn intricate 

patterns and achieve remarkable performance on more challenging and complex 

problems. The abundance of data enables the models to generalize well and make 

accurate predictions or classifications. 

 

Therefore, deep learning's success is highly dependent on the availability of sufficient 

and representative data. When provided with enough data, deep learning models can 
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excel in tackling intricate and multifaceted problems, surpassing the capabilities of 

conventional ML methods. 

 

2.5.1 Constructing Input Sets 

In this study, two distinct types of input sets were created using the collected kinematic 

data, as depicted in Figure 2.6. The first type of input set involved stacking the extracted 

features from the kinematic time series, which were obtained following the Automated 

Feature Assessment Workflow for Instrumented Gait Analysis [35]-(Wolf et al., 2006). 

These extracted features captured relevant information from the time series to be used 

in conventional ML algorithms. On the other hand, the second type of input set 

comprised solely the stance segment of the raw kinematic time series themselves as 

explained for the Study II to be used in deep learning algorithms. 
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Figure 2.6: The flowchart for constructing two input subsets. 
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2.5.2 Extracting Features for Conventional ML Models 

As conducted in the study of Wolf et al. [35]-(Wolf et al., 2006), two new time series 

were derived from the mean time series for each joint angle: The first gradient time 

series and the difference from the normative time series. The first gradient "V" of the 

mean time series “U” was calculated according to the Formula (3), where “k” is the data 

point index within a gait cycle. A discrete derivation of the mean time series must be 

done since the time series are in a discrete domain. 

 

𝑉[𝑘] =  
1

2
(𝑈[𝑘 + 1] − 𝑈[𝑘 − 1])          (3) 

 

The difference relative to a reference considered to be normal 𝑈𝑛𝑜𝑟𝑚 namely difference 

from normative “𝐷𝑁" was calculated according to the Formula (4): 

 

𝐷𝑁[𝑘] =  |𝑈[𝑘] − 𝑈𝑛𝑜𝑟𝑚[𝑘]|       (4) 

 

For each joint angle, reference normal time series 𝑈𝑛𝑜𝑟𝑚 was calculated by averaging 

the corresponding time series across all TD subjects.  

 

For each joint angle, the computed scalar features from both derived and original time 

series were as follows: Minimum and maximum values and their timings (i.e. temporal 

position in the gait cycle; x-axis in Figure 2.7). Note that, for the standard deviation 

time series, only the maximum value and its timing were considered as features since it 

makes sense that strongly varying gait of subjects with CP may cause more differences 

in the gait patterns among the strides. For the first gradient time series, the average 
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difference from normative was additionally considered because the difference from the 

normal gait pattern may contain meaningful information. 

 

Figure 2.7: Computed features of an example time series. The orange line shows the 

ankle dorsi plantar flexion of the subject. The blue line shows the reference normal time 

series for the ankle dorsi plantar flexion. 

 

 

2.5.3 Machine Learning Algorithms 

Two deep learning models, namely 1D-CNN (the same model as used in Study II), long 

short term memory network (LSTM) and four conventional ML models, namely ridge 

regression (R-Regr), k-nearest neighbor (KNN), random forest (RF), and multilayer 

neural network (MLNN) were developed and compared regarding the same evaluation 

metrics described in Section 2.4.3 for Study II. 
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Based on the manual preliminary trials conducted on the development set, similarly 

executed as described for the Study I in Section 2.3.2, the hyper-parameters of the 

conventional ML algorithms, namely, R-Regr, KNN, and RF were carefully selected to 

ensure their suitability for our specific case of predicting joint moments. The deep 

learning model 1D-CNN is used same as developed in the Study II, explained in Section 

2.4. The deep learning model LSTM is used with the same densely connected structure 

as in the 1D-CNN and the hyper parameters of the LSTM layers are selected with the 

same approach described for the Study I in Section 2.3.2. The MLNN model is designed 

to have the same structure as the densely connected layers of the 1D-CNN model. Table 

2.1 below shows the hyper-parameters of the models.  

Table 2.1: Hyper-parameters of the machine learning models 

Model List of hyper-parameters 

LSTM Number of LSTM layers, number of LSTM units at each layer, activation function, 
drop-out ratio, number of densely connected layers 

1D-CNN Number of convolutional layers, number of filter per each layer, size of the filters in 
each layer, activation function, drop-out ratio, number of densely connected layers 

R-Regr The regularization strength, the type of solver algorithm 

KNN The type of distance metric, the type of weight function, the type of algorithm for 
computing nearest neighbor, the size of leaf (for the requiring algorithms)   

RF The number of trees in the forest, split quality criterion, the minimum required 
samples for splitting a node, the minimum required samples for being a leaf node, 
maximum depth of trees, the maximum number of features for splitting, the 
existence of bootstrapping 

MLNN Number of densely connected layers, activation function, drop-out ratio 

 

These architectures serve not only the best learning possible but also the purpose of 

ensuring a fair and meaningful comparison between the deep learning approach (based-

on autonomously extracted features) and the conventional ML method (based-on 

manually extracted features). By aligning the architecture of the MLNN model with the 

densely connected layers of the 1D-CNN, we create a consistent framework that allows 

us to directly evaluate the impact of feature extraction on the performance of the models. 
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This approach enables a comprehensive analysis of the benefits and limitations 

associated with both approaches, shedding light on the effectiveness of feature 

extraction methods and their influence on the predictive capabilities of the models. The 

models are trained following the same pipeline as previously described in Figure 2.5 for 

the prediction of the ankle dorsi-plantar flexion moment.  

 

2.6. Statistical Analysis 

The resulting evaluation metrics for predicting GRF (Study 1) not only provided 

valuable insights but also necessitated a comprehensive statistical analysis for a more 

in-depth discussion and interpretation. This was particularly crucial given the presence 

of two distinct groups in the study, namely TD individuals and those with CP. By 

conducting statistical analyses on the evaluation metrics, we were able to explore and 

uncover potential differences, patterns, and trends between these two groups in terms 

of the predicted GRF.  

 

Similarly, the same principle applies to the prediction study involving various ML 

algorithms (Study III). In this study, we explored the performance and effectiveness of 

six different models for predicting the desired outcomes. With the presence of multiple 

models to compare, it became necessary to employ statistical analysis techniques to 

assess and compare their predictive capabilities.  

 

 

We hypothesized that the performance metrics differ significantly, between each group 

in Study I, and between the models in Study III. Statistical analysis was conducted using 
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SPSS software (Version 21.0; SPSS; Chicago, IL, USA) and the level of significance 

was set at 0.05. The resulting evaluation metrics were checked with Kolmogorov-

Smirnov test whether they are normally distributed or not. They were both found not to 

be normally distributed. The statistical significance between two subject groups in 

Study I was checked with Mann-Whitney U test. The statistical significance between 

the models in Study III was checked with Friedman’s Anova test. A Bonferroni 

correction was applied to adjust the p-value for multiple comparisons (p<0.016).  A 

Bonferroni correction was implemented to account for multiple comparisons, resulting 

in an adjusted p-value threshold of 0.016. 

 

The resulting evaluation metrics for predicting joint moments (Study II) required 

statistical analysis for further discussion, since there are four predicted joint moments 

of two subject groups, namely TD and CP. Statistical analysis was conducted using 

SPSS software (Version 21.0; SPSS; Chicago, IL, USA). We performed both inter-

comparisons (between patient with CP and TD subjects) and intra-comparisons (within 

each group of subjects). In the inter-comparison, we hypothesized that the prediction 

success rates for the joint moments differ significantly between the groups, namely 

patients with CP and TD subjects. In the intra-comparison, we hypothesized that the 

prediction success rates of the aforementioned joint moments differ significantly within 

each group of subjects. The level of significance was set at 0.05. The Kolmogorov-

Smirnov test was used to test the normality of the data, which was found not to be 

normally distributed. The predicted joint moments of the TD subjects and patients with 

CP were statistically analyzed using the Mann–Whitney U-test. For the intra-

comparisons, Friedman’s ANOVA test was used. The Mann–Whitney U-test was used 
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to identify significant differences between the methods. A Bonferroni correction was 

applied to adjust the p-value for multiple comparisons (p<0.016). Please refer to 

Appendix A for details on the intra- and inter-comparison groups and the type of 

analysis. 

 

3. RESULTS 

3.1. Results of predicting ground reaction forces using one-dimensional 

convolutional neural network  

For TD subjects, the mean normalized root mean square error (nRMSE) value for 

predicting GRF was found 7.47%±3.53 (Figure 3.1), indicating a relatively low level of 

prediction error. On the other hand, patients with CP had a higher mean nRMSE value 

of 11.75%±6.88 (Figure 3.1), showing a higher level of prediction error in their case. 
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Figure 3.1: Normalized root mean square error (nRMSE) scores for ground reaction 

force predictions of TD subjects and patients with CP. 

 

In terms of the Pearson correlation coefficient (PCC), TD subjects exhibited a mean 

PCC value of 0.98 (Figure 3.2), indicating a strong pattern similarity between the 

predicted and experimental GRF values. Conversely, patients with CP had a slightly 

lower mean PCC value of 0.94 (Figure 3.2), indicating a slightly weaker pattern 

similarity between the predicted and experimental GRF values in their case. 
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Figure 3.2: Pearson correlation coefficient (PCC) scores for ground reaction force 

predictions of TD subjects and patients with CP. 

 

Statistical analysis, as described in Section 2.6, was conducted to compare the CP and 

TD subject groups. The resulting p-values for nRMSE and PCC values were found to 

be 0.032 and 0.027, respectively. These p-values indicate significant differences 

between the subject groups in terms of both magnitude (nRMSE) and pattern similarity 

(PCC). 

 

Figure 3.3 provides a collection of representative predicted and experimental GRFs for 

patients with CP, offering valuable insights into the predictive capabilities of the trained 

models across different scenarios. The inclusion of these diverse examples aims to 

enhance the understanding of how well the models perform in predicting GRFs with 
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varying patterns. The upper row of the figure showcases predictions that have achieved 

relatively high levels of success, evaluated with lower normalized root mean square 

error (nRMSE) values and higher Pearson correlation coefficient (PCC) values 

compared to the average performance of the model. These predictions demonstrate the 

models' proficiency in successfully capturing the intricate dynamics of the GRFs. On 

the other hand, the lower row of the figure presents predictions that are comparatively 

less successful, exhibiting higher nRMSE values and lower PCC values than the 

average. These examples highlight the challenges faced by the models in accurately 

reproducing certain complex patterns within the GRF data. By including both successful 

and less successful predictions, the figure provides a comprehensive representation of 

the models' performance, enabling a nuanced evaluation of their overall predictive 

capabilities. 



 

37 
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Figure 3.3: Secondary, representative results for aiding interpretations of Figure 3.1 and 

Figure 3.2. Predictions of ground reaction force for representative typically developed 

subjects and patients with cerebral palsy. CP: Cerebral palsy, TD: Typically developed. 

(A) corresponds to above-average prediction success for patients with CP, (B) 

corresponds to below-average prediction success for patients with CP, (C) corresponds 

to above-average prediction success for TD subjects, (D) corresponds to below-average 

prediction success for TD subjects. The blue line represents the experimental ground 

reaction force, while the red line represents the predicted ground reaction force. 

 

3.2. Results of deep learning-based prediction of joint moments based on 

kinematics in patients with cerebral palsy 

For TD subjects, all joint moments were predicted with mean nRMSE values less than 

12.55%±5.08 (Figure 3.4). The knee flexion-extension moment is the least successfully 

predicted joint moment in terms of nRMSE score (12.55%±5.08). The dorsi-plantar 

flexion is the most successfully predicted joint moment (8.58%±3.87). The hip 

adduction-abduction and hip flexion-extension moments were predicted with an 

nRMSE value of 11.89%±4.72 and 10%±3.66 for TD subjects, respectively. 

 

For patients with CP, all joint moments were predicted with mean nRMSE values less 

than 18.02%±9.14 (Figure 3.4). The knee flexion-extension moment is the least 

successfully predicted joint moment in terms of nRMSE (18.02%±9.14), while the hip 

flexion-extension is the most successfully predicted joint moment (13.58%±5.36). The 

hip adduction-abduction and dorsi-plantar flexion moments were predicted with an 

nRMSE value of 17.2%±6.53 and 14.78%±7.17 for the CP group, respectively. 
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Figure 3.4: Normalized root mean square error (nRMSE) scores for joint moment 

predictions of TD subjects (red) and patients with CP (blue). Hip abd/add: hip adduction 

abduction, Hip flex/ext: hip flexion extension, Knee flex/ext: knee flexion extension, 

Dorsi/plant flex: dorsi plantar flexion. 

 

For TD subjects, all joint moments were predicted with mean PCC scores higher than 

0.96 (Figure 3.6). The dorsi-plantar flexion is the most successfully predicted joint 

moment in terms of PCC score (0.99), while the others have the same PCC (0.96).  

 

For the patient group, all joint moments were predicted with mean PCC scores higher 

than 0.89 (Figure 3.6). The hip adduction-abduction moment is the least successfully 

predicted moment in terms of PCC score (0.89), while the dorsi-plantar flexion is the 

most successfully predicted one (0.96).  
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Figure 3.5: Pearson correlation coefficient (PCC) scores for joint moment predictions 

of TD subjects (red) and patients with CP (blue). Hip abd/add: hip adduction-abduction, 

Hip flex/ext: hip flexion-extension, Knee flex/ext: knee flexion-extension, Dorsi/plant 

flex: dorsi plantar-flexion. 

 

Tables 3.1 and 3.2 present the statistical significance of the nRMSE and PCC scores 

obtained for the joints of TD and patient groups, respectively. Within the TD group, the 

dorsi-plantar flexion and hip flexion-extension moments exhibited significantly better 

predictions than the hip abduction-adduction and knee flexion-extension moments in 

terms of nRMSE (Table 3.1). When considering the PCC scores, the prediction rate for 

the dorsi-plantar flexion moment was significantly higher than that for the knee flexion-

extension joint moment (Table 3.1). 
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Table 3.1. P-values obtained for the nRMSE and PCC values of joint moment 

predictions for healthy subjects. Significant differences were marked bold. 

Hipaddabd: hip adduction-abduction, hipflexext: hip flexion-extension, kneeflexext: 

knee flexion-extension, dorsiplanflex: dorsi-plantar flexion 

    nRMSE PCC 

Hip add/abd 

vs. 

Hip flex/ext 0.014 0.021 

Knee flex/ext 0.019 0.020 

Dorsi/planflex 0.015 0.018 

Hip flex/ext 

vs. 

Hip add/abd 0.014 0.021 

Knee flex/ext 0.012 0.019 

Dorsi/planflex 0.020 0.016 

Knee flex/ext 

vs. 

Hip add/abd 0.019 0.020 

Hip flex/ext 0.012 0.019 

Dorsi/planflex 0.014 0.014 

Dorsi/plan 

flex vs. 

Hip add/abd 0.015 0.018 

Hip flex/ext 0.020 0.016 

Knee flex/ext 0.014 0.014 

 

Within the patient group, the dorsi-plantar flexion moment was significantly better 

predicted than the hip abduction-adduction and knee flexion-extension moments in 

terms of nRMSE (Table 3.2). Furthermore, when taking the PCC scores into account, 

the prediction rates for the dorsi-plantar flexion and hip flexion-extension moments 

were significantly higher than those for the knee flexion-extension and hip abduction-

adduction moments (Table 3.2). 
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Table 3.2. P-values obtained for the nRMSE and PCC values of joint moment 

predictions for the patients with CP. Significant differences were marked bold. 

Hipaddabd: hip adduction-abduction, hipflexext: hip flexion-extension, kneeflexext: 

knee flexion-extension, dorsiplanflex: dorsi-plantar flexion 

    nRMSE PCC 

Hip add/abd 

vs. 

Hip flex/ext 0.016 0.015 

Knee flex/ext 0.018 0.032 

Dorsi/planflex 0.014 0.011 

Hip flex/ext 

vs. 

Hip add/abd 0.016 0.015 

Knee flex/ext 0.014 0.013 

Dorsi/planflex 0.018 0.028 

Knee flex/ext 

vs. 

Hip add/abd 0.018 0.032 

Hip flex/ext 0.014 0.013 

Dorsi/planflex 0.012 0.011 

Dorsi/plan 

flex vs. 

Hip add/abd 0.014 0.011 

Hip flex/ext 0.018 0.028 

Knee flex/ext 0.012 0.011 

 

 

Table 3.3 demonstrates the statistical significance of the scores between the TD 

individuals and patient groups. In terms of nRMSE, all four joint moments were 

predicted significantly higher in the TD group than in the CP group. 

Table 3.3. P-values obtained for the comparison of the nRMSE and PCC 

values of joint moment predictions for the healthy subjects and patients with CP. 

Significant differences were marked in bold. Hipaddabd: hip adduction-abduction, 

hipflexext: hip flexion-extension, kneeflexext: knee flexion-extension, dorsiplanflex: 

dorsi-plantar flexion 

    nRMSE PCC 

Healthy vs. 

Patients with 

CP 

Hip add/abd 0.041 0.033 

Hip flex/ext 0.047 0.051 

Knee flex/ext 0.038 0.037 

Dorsi/plan flex 0.034 0.055 
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Figures 3.6 and 3.7 show some representative predicted and experimental joint moments 

of TD subjects and patients with CP, respectively. These figures are provided for a better 

understanding of the trained models’ capability of predicting joint moments with 

varying patterns. To ensure the representativeness of the models' capability in predicting 

joint moments, the figures in the left column show relatively successful predictions 

(with lower nRMSE and higher PCC values than the average), while the figures in the 

right column show relatively less successful predictions (with higher nRMSE and lower 

PCC values than the average). 
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Figure 3.6: Secondary, representative results for aiding interpretations of Figure 3.4 
and Figure 3.5. Joint moments of a) dorsi-plantar flexion, b) knee flexion-extension, c) 
hip flexion-extension, d) hip adduction-abduction for representative typically 
developed subjects. The predictions on the left column correspond to above-average 
success rates, while those on the right column correspond to below-average success 
rates. The blue line represents the experimental joint moment, while the red dashed 
line represents the predicted joint moment. 
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Figure 3.7: Secondary, representative results for aiding interpretations of Figure 3.4 
and Figure 3.5. Joint moment predictions of a) dorsi-plantar flexion, b) knee flexion-
extension, c) hip flexion-extension, d) hip adduction abduction for representative 
patients with cerebral palsy. The predictions on the left column correspond to above-
average success rates, while those on the right column correspond to below-average 
success rates. The blue line represents the experimental joint moment, while the red 
dashed line represents the predicted joint moment. 
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3.3 Results of predicting joint moments of patients with cerebral palsy using deep 

and various conventional machine learning methods 

For the random forest algorithm, the mean nRMSE value was found 14.93% (±6.81%). 

This suggests that, on average, the predicted ankle dorsi-plantar flexion values deviated 

from the experimental values by approximately 14.93%. Similarly, the multilayer neural 

network achieved a mean nRMSE value of 14.35% (±6.15%). The k-nearest neighbour 

algorithm exhibited a slightly higher mean nRMSE value of 17.94% (±7.96%). The 

ridge regression model achieved a mean nRMSE value of 14.19% (±6.34%). The one-

dimensional convolutional neural network achieved a mean nRMSE value of 14.78% 

(±7.17%), while the long short-term memory network obtained a mean nRMSE value 

of 14.73% (±7.04%). See Figure 3.8 for a bar representation of the models’ successes 

in terms of nRMSE values.  
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Figure 3.8: Normalized root mean square error (nRMSE) scores for predicting ankle 

dorsi-plantar flexion moment of patient with CP. RF: Random forest, MLNN: 

Multilayer neural network, kNN: K-nearest neighbor, CNN: one dimensional 

convolutional neural network, LSTM: Long short term memory neural network.  

 

For ankle dorsi-plantar flexion prediction, the random forest, multilayer neural network, 

and ridge regression models achieved high PCC values of 0.95. This indicates a strong 

positive correlation between the predicted and experimental values, suggesting that 

these models were successful in capturing the underlying patterns in the ankle dorsi-

plantar flexion data. The k-nearest neighbour algorithm achieved a slightly lower PCC 

value of 0.92, indicating a slightly weaker correlation. The one-dimensional 

convolutional neural network and long short-term memory network performed well, 

with PCC values of 0.96 and 0.95, respectively, indicating strong correlations between 
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the predicted and experimental ankle dorsi-plantar flexion values (Figure 3.9). 

 

 

Figure 3.9: Pearson correlation coefficient (PCC) scores for predicting ankle dorsi-

plantar flexion moment of patient with CP. RF: Random forest, MLNN: Multilayer 

neural network, kNN: K-nearest neighbor, CNN: one dimensional convolutional neural 

network, LSTM: Long short term memory neural network.  

 

These results demonstrate the capabilities of the different ML algorithms in predicting 

ankle dorsi-plantar flexion for patients with CP. The nRMSE values provide insights 

into the magnitude of prediction errors, while the PCC values reflect the degree of 

pattern similarity. Overall, the algorithms exhibited relatively low prediction errors and 

strong correlations, indicating their potential usefulness in accurately predicting ankle 

dorsi-plantar flexion for patients with CP. 
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Table 3.4 presents the p-values resulting from the statistical analysis approach described 

in Section 2.6. These p-values provide a quantitative measure of the statistical 

significance of the observed differences and enable a rigorous evaluation of the obtained 

performance results of the six aforementioned ML models. Each row of the table 

represents a specific model (KNN, LSTM, MLNN, RF, R-Regr, 1DCNN), and each 

column represents the model being compared against (KNN, LSTM, MLNN, RF, R-

Regr, 1DCNN). For example, the first row indicates the p-values for comparing KNN 

with other models in terms of nRMSE and PCC. 

 

The obvious outcomes of the statistical significance results regarding the Table 3.4 

should be noted as following. RF generally shows lower p-values compared to other 

models, indicating significant differences in performance. MLNN and LSTM often 

have higher p-values, suggesting less significant differences compared to other models. 

1DCNN shows relatively higher p-values in some comparisons, implying less 

significant differences compared to certain models.  
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Table 3.4. p-values obtained for the comparison of the nRMSE and PCC values of ankle 

dorsi-plantar flexion moment predictions for the patients with CP. Significant 

differences were marked bold. RF: Random forest, MLNN: Multilayer neural network, 

kNN: K-nearest neighbour, CNN: one dimensional convolutional neural network, 

LSTM: Long short term memory neural network 

 nRMSE PCC 

KNN vs LSTM 0.0139 0.0131 

MLNN 0.0132 0.0137 

RF 0.0126 0.0131 

R-Regr 0.0128 0.0136 

1DCNN 0.0132 0.0127 

LSTM vs KNN  0.0139 0.0131 

MLNN 0.0169 0.0159 

RF 0.0157 0.0172 

R-Regr 0.0157 0.0161 

1DCNN 0.0169 0.0158 

MLNN vs KNN 0.0132 0.0137 

LSTM 0.0169 0.0159 

RF 0.0175 0.0152 

R-Regr 0.0175 0.0173 

1DCNN 0.0522 0.0149 

RF vs KNN 0.0126 0.0131 

LSTM 0.0157 0.0172 

MLNN 0.0175 0.0152 

R-Regr 0.0518 0.0148 

1DCNN 0.0497 0.0151 

R-Regr vs KNN 0.0128 0.0136 

LSTM 0.0157 0.0161 

MLNN 0.0175 0.0173 

RF 0.0518 0.0148 

1DCNN 0.0492 0.0142 

1DCNN vs KNN 0.0132 0.0127 

LSTM 0.0169 0.0158 

MLNN 0.0522 0.0149 

RF 0.0497 0.0151 

R-Regr 0.0492 0.0142 

p<0.016 
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4. DISCUSSION 

Since joint moments and GRFs are valuable assessment parameters in the management 

of CP [3]-(Lai et al., 1988) and hard to capture experimentally, we predicted vertical 

GRF and, dorsi-plantar flexion, knee flexion-extension, hip flexion-extension, and the 

hip adduction-abduction moments of patients with CP during gait from joint angles 

using 1D CNN in our study. We found that the joint moments of patients could be 

predicted with nRMSE values less than 18.02% and PCC scores higher than 0.85 and 

GRF of the patients with CP could be predicted with an average nRMSE value of 

11.75% and an average PCC value of 0.94. In the TD group, all joint moments were 

predicted with nRMSE values less than 12.55% and PCC scores higher than 0.94, 

whereas GRF was predicted with an nRMSE of 7.47% and a PCC of 0.98. The 

predictions mostly captured the patterns and magnitudes of the experimentally obtained 

joint moments and GRF. 

 

Mundt et al. predicted joint moments from joint angles of TD subjects using a densely 

connected feed-forward and an LSTM neural network achieved nRMSE scores between 

12.14% to 15.00% and PCC scores between 0.92 to 0.97 on cross validation splits [19]-

(Mundt et al., 2020a), whereas in our study the CNN model achieved nRMSE scores 

between 8.58% to 12.55% and PCC scores between 0.94 to 0.98 for TD subjects 

(Figures 4 and 5). There is another study predicting joint moments of TD subjects based 

on EMG and GRF components using wavelet neural networks, which achieved higher 

success in terms of nRMSE (lower than 5.69%) and PCC  (above 0.99) (Ardestani et 

al., 2014). Using GRF as input information would increase the prediction success since 

GRF and joint moments are biomechanically coupled. Thus, GRF that was leaked into 
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the calculated joint moments was considered the golden standard in this study. In our 

study, only the joint angles were used as input which were separately measured and 

easily accessible information in routine gait analysis, hence there is no further need for 

costly equipment like force plates. 

 

4.1 Discussion for Study I  

Comparing the prediction of GRF between TD subjects and those with CP, TD subjects 

exhibited significantly higher success in terms of nRMSE and PCC (Section 3.1). The 

presence of diverse gait deviations in CP cases poses challenges for the learning process 

of CNN models, resulting in lower performance in predicting joint moments for patients 

compared to TD subjects. This outcome was anticipated due to the increased complexity 

of the coupled relationship between joint angles and GRFs in patients with CP. Despite 

the TD group having a relatively smaller number of subjects in comparison to the CP 

group, the models for TD subjects exhibited higher success rates in predicting joint 

moments. This finding is noteworthy considering the commonly recognized 

disadvantage of training machine learning models with a limited sample size, showing 

that strongly varying gait characteristics of CP patients won’t allow ML models to gain 

advantage from larger sample size when compared with TD prediction successes. The 

GRF patterns depicted in Figure 3.3 serve as evidence that the models successfully 

predicted GRFs with different characteristics. To assess the models' performance, blind 

testing was conducted using randomly selected test splits across all participants, 

indicating their potential for accurately predicting gait kinetics across a range of gait 

patterns. This study presents a significant advancement by offering the potential to 

enable motion analysis of patients with CP without the need for force plates, thus 
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eliminating the reliance on costly equipment and simplifying the assessment process. 

 

4.2 Discussion for Study II  

The prediction of joint moments for TD subjects was achieved with a significantly 

higher success regarding nRMSE within all considered joint moments, whereby with a 

significantly higher PCC within hip adduction-abduction and knee flexion-extension 

moments (Table 3) when compared to those for subjects with CP. The varying deviation 

of gait in CP cases makes the learning process of the CNN models harder, which caused 

less moment prediction performance in the patient group compared to TD subjects. This 

was expected due to the coupled relation between joint angles and joint moments 

becoming more complex in patients with CP. The models for TD subjects have achieved 

higher success rates despite having a relatively smaller number of subjects than the CP 

group, which is a commonly recognized disadvantage when training ML models. The 

sub-classification of CP groups based on altered gait patterns, such as crouch gait and 

tip-toe, and training separate ML models for each subgroup could improve the 

prediction accuracy. We consider this attempt as the next step in gait kinetics prediction 

studies for CP patients. 

 

One could argue that the prediction of moments in the joints that are closer to the ground 

(distal joints) would be more successful than those that are further from the ground 

(proximal joints) because the calculation of joint moments that is based on inverse 

dynamics is performed in a stepwise fashion from bottom to the top resulting in 

accumulating errors in calculations [16]-(Whittle et al., 2014). This was not totally 

observable in our results however, the joint moment with the highest prediction success 
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for TD subjects was the ankle dorsi-plantar flexion, which fits that expectation.  

 

The representative joint moments presented in Figure 3.6 and Figure 3.7 indicate that 

the models were able to predict joint moments with different profiles. The models were 

blindly tested with randomly selected test splits across all included subjects, hence the 

performance of the models is promising for predicting gait kinetics of varying gaits. 

Although the results are promising, the fact that the gait analysis is used for surgical 

decision-making in CP makes the use of ML-based joint moment predictions limited, 

since the obtained error rates might still be critical for surgical decision-making. The 

accuracy of obtaining kinematics data from markers directly affects the correctness of 

joint moment prediction. Moreover, inaccurate recording of kinematics data, caused by 

marker misplacement or soft tissue artifacts, can result in biomechanically inaccurate 

joint moments (Fonseca et al, 2020). However, the successful application of this 

workflow would facilitate the gait analysis of patients with CP by reducing laboratory 

effort and eliminating the need for complex musculoskeletal models for calculating joint 

moments. Furthermore, this workflow can help clinicians with the treatment protocol 

by providing joint moments of the patients with CP, whose GRFs could not be correctly 

measured at all due to using assistive devices or very short stride length.   

 

4.3 Discussion for Study III 

In the part of the study aiming to predict joint moments of patients with CP using various 

ML methods, six ML models were developed and evaluated for their prediction success 

in ankle dorsi-plantar flexion. The models included kNN, LSTM, MLNN, RF, R-Regr, 

and 1DCNN. This part of the study also focused on comparing two types of kinematic 



 

55 

 

input data: manually extracted time domain features for conventional ML models and 

automatically extracted features within the deep learning models. 

 

Interestingly, all models, except for kNN, achieved similar levels of success with 

relatively low standard deviations. This finding suggests that regardless of the specific 

form of kinematic data representation, accurate predictions of gait kinetics can be 

achieved if the models are trained with suitable ML algorithms. This implies that both 

manually extracted time domain features and automatically extracted features within 

deep learning models can provide sufficient information for predicting joint moments 

in patients with CP. 

 

The results of this study highlight the versatility and effectiveness of different ML 

approaches in predicting gait kinetics. It emphasizes the importance of selecting the 

appropriate algorithm based on the specific dataset and research objective. While 

conventional ML models and deep learning models demonstrated comparable success 

in this study, it is crucial to consider factors such as computational efficiency, 

interpretability, and generalizability when choosing the most suitable ML approach for 

a particular application. 

 

Moreover, the finding that different forms of kinematic data representation yielded 

similar prediction performance suggests that the choice between manual feature 

extraction and automatic feature extraction can be based on practical considerations and 

the availability of data. Manual feature extraction requires domain expertise and prior 

knowledge of relevant features, whereas automatic feature extraction allows the model 
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to learn complex patterns and representations directly from the raw input data. Both 

approaches have their advantages and limitations, and the decision should be based on 

the specific requirements and constraints of the study. 

 

This part of the study demonstrates that accurate predictions can be achieved regardless 

of the specific data representation method. This highlights the flexibility of ML 

approaches in gait analysis and provides valuable insights for future research and 

clinical applications in the field of CP management. 

 

4.4 Limitations 

Limitations of this study should be considered. Firstly, the models were limited to the 

aforementioned vertical GRF and four joint moments, which are major kinetic 

parameters for the management of CP, however additional joint moments like hip 

internal/external rotation and ankle inversion/eversion may also be taken into account 

in monitoring CP. Secondly, the kinematics data included only the trunk from the upper 

body, however further kinematics data from upper extremities like arms may provide 

valuable information, thereby improving the ML models’ prediction success rates. 

Thirdly, it is ambiguous if the model would be able to predict a marginal GRF or joint 

moment from a CP patient with a novel form of deviation, which did not show up in our 

subject dataset. Although the used dataset is large and has been collected over two 

decades, the ML algorithm should always be further developed with potential new 

cases’ data. For example, we did not include hemiplegic and tetraplegic subjects in the 

study. The implementation of ML algorithms on such patients would improve the 

applicability of the proposed joint kinetics prediction procedure. 
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5. CONCLUSION AND FUTURE WORK 

In conclusion, the findings from this study highlight the potential of ML-based 

prediction of joint moments and GRF using kinematics as an alternative technique to 

conventional joint moment calculation in the gait analysis of patients with CP in the 

near future. The results demonstrate that ML models can successfully estimate joint 

moments and GRFs based on kinematic data, offering a promising avenue for capturing 

important kinetic parameters in an accessible manner. 

 

However, it is important to acknowledge that the current level of prediction errors may 

still limit the immediate use of ML-based techniques for clinical decision-making today. 

While the models achieved favourable prediction success rates, there is a limitation that 

need to be addressed before these techniques can be seamlessly integrated into clinical 

practice. This consideration is the clinical significance of prediction errors. Even though 

the models showed promising performance regarding the well-accepted evaluation 

metrics, the accuracy and reliability of the predicted joint moments may not meet the 

critical thresholds required for making surgical decisions or implementing specific 

treatment protocols.  

 

On the other hand, to the best of our knowledge, the clinicians did not explicitly define 

a specific threshold in their academic literature, indicating a gap in the existing 

knowledge. This observation underscores the pressing need for stronger and more 

collaborative partnerships between researchers and clinicians. By fostering closer 

collaborations, we can bridge this gap and facilitate the exchange of expertise and 

insights, ultimately enhancing the integration of scientific findings into clinical practice. 
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Such collaborations would enable researchers and clinicians to collectively establish 

meaningful thresholds and guidelines that can effectively inform decision-making 

processes and improve patient care. 

 

The limitations identified in this study open up possibilities for future research and 

development in the field of predicting joint moments in patients with CP. Here are some 

potential avenues for future work based on the limitations mentioned: 

 

A potential avenue for future work in joint moment prediction studies for CP patients 

involves the sub-classification of CP groups according to specific altered gait patterns, 

such as crouch gait and tip-toe. By creating distinct subgroups based on these variations, 

and subsequently training separate ML models for each subgroup, it is anticipated that 

the prediction accuracy can be significantly improved. This approach represents a 

logical progression in the field, and its implementation holds promise for advancing our 

understanding of CP biomechanics and optimizing the accuracy of joint moment 

predictions in clinical settings. 

 

Expansion of joint moment analysis is possible. While this study focused on vertical 

GRFs and four major joint moments, there is room for including additional joint 

moments such as hip internal/external rotation and ankle inversion/eversion. 

Considering these additional joint moments could provide a more comprehensive 

understanding of the biomechanics of patients with CP and further improve the 

monitoring and management of their condition. 
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It is also a good idea to incorporate the upper extremity kinematics. The current study 

primarily focused on kinematics data from the trunk and lower extremities. Future 

research could explore the inclusion of kinematic data from the upper extremities, 

particularly the arms. This additional information could provide valuable insights into 

the overall movement patterns and contribute to improving the prediction success rates 

of ML models. 

 

It remains uncertain whether the developed models would be capable of predicting 

marginal GRF or joint moments in patients with CP exhibiting novel forms of deviation 

that were not present in the subject dataset used in this study. To address this limitation, 

future work could involve collecting data from a broader range of patients, including 

those with unique gait deviations or specific subtypes of CP, such as hemiplegia or 

tetraplegia. By including diverse cases and continuously updating the ML algorithms 

with new data, the applicability and robustness of the joint kinetics prediction procedure 

can be enhanced. 

 

The dataset used in this study was collected over two decades, providing a substantial 

amount of information. However, to further improve the ML models and their 

generalizability, it would be valuable to gather longitudinal data from patients with CP. 

Long-term follow-up studies can help capture the progression of the condition, assess 

treatment effectiveness, and refine the predictive capabilities of the models over time. 

 

This study focused specifically on patients with CP. Future research could explore the 

application of ML algorithms to other patient groups, such as individuals with different 
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neuromuscular disorders or orthopaedic conditions. By adapting and fine-tuning the ML 

models for specific patient populations, the joint kinetics prediction procedure can be 

extended to a broader range of clinical scenarios, enabling personalized treatment 

planning and evaluation. 

 

In conclusion, future work in this field could involve sub classifying the CP groups, 

expanding the analysis to include additional joint moments, incorporating upper 

extremity kinematics, addressing novel forms of deviation, collecting longitudinal data, 

and applying ML algorithms to diverse patient groups. These advancements would 

contribute to a more comprehensive understanding of gait kinetics in various clinical 

populations and further enhance the clinical utility of predictive models for joint 

moment analysis. 
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6. APPENDIX A: Details of the statistical analysis for the resulting evaluation 

metrics of predicting joint moments (Study II) 

 
Table. Details of the statistical analysis 
 

Type of analysis  Friedman’s ANOVA (for the intra-comparison) 
 

 Mann-Whitney U test (for the inter-comparison) 

Intra-comparison  nRMSE values calculated between the predicted and 
experimental hip abduction-adduction moment vs. nRMSE 
values calculated between the predicted and experimental 
hip flexion-extension moment, 

 nRMSE values calculated between the predicted and 
experimental hip abduction-adduction moment vs. nRMSE 
values calculated between the predicted and experimental 
knee flexion-extension moment, 

 nRMSE values calculated between the predicted and 
experimental hip abduction-adduction moment vs. nRMSE 
values calculated between the predicted and experimental 
dorsi-plantar flexion moment, 

 nRMSE values calculated between the predicted and 
experimental hip flexion-extension moment vs. nRMSE 
values calculated between the predicted and experimental 
knee flexion-extension moment, 

 nRMSE values calculated between the predicted and 
experimental hip flexion-extension moment vs. nRMSE 
values calculated between the predicted and experimental 
dorsi-plantar flexion moment, 

 nRMSE values calculated between the predicted and 
experimental knee flexion-extension moment vs. nRMSE 
values calculated between the predicted and experimental 
dorsi-plantar flexion moment, 

 PCC values calculated between the predicted and 
experimental hip abduction-adduction moment vs. PCC 
values calculated between the predicted and experimental 
hip flexion-extension moment, 

 PCC values calculated between the predicted and 
experimental hip abduction-adduction moment vs. PCC 
values calculated between the predicted and experimental 
knee flexion-extension moment, 

 PCC values calculated between the predicted and 
experimental hip abduction-adduction moment vs. PCC 
values calculated between the predicted and experimental 
dorsi-plantar flexion moment, 

 PCC values calculated between the predicted and 
experimental hip flexion-extension moment vs. PCC values 
calculated between the predicted and experimental knee 
flexion-extension moment, 
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 PCC values calculated between the predicted and 
experimental hip flexion-extension moment vs. PCC values 
calculated between the predicted and experimental dorsi 
plantar flexion moment, 

 PCC values calculated between the predicted and 
experimental knee flexion-extension moment vs. PCC 
values calculated between the predicted and experimental 
dorsi-plantar flexion moment, 

Inter-comparison  nRMSE values calculated between the predicted and 
experimental hip abduction-adduction moment of the CP 
patients vs. those calculated healthy subjects, 

 nRMSE values calculated between the predicted and 
experimental hip flexion-extension moment of the CP 
patients vs. those calculated healthy subjects, 

 nRMSE values calculated between the predicted and 
experimental knee flexion-extension moment of the CP 
patients vs. those calculated healthy subjects, 

 nRMSE values calculated between the predicted and 
experimental dorsi-plantar flexion moment of the CP 
patients vs. those calculated healthy subjects, 

 PCC values calculated between the predicted and 
experimental hip abduction-adduction moment of the CP 
patients vs. those calculated healthy subjects, 

 PCC values calculated between the predicted and 
experimental hip flexion-extension moment of the CP 
patients vs. those calculated healthy subjects, 

 PCC values calculated between the predicted and 
experimental knee flexion-extension moment of the CP 
patients vs. those calculated healthy subjects, 

 PCC values calculated between the predicted and 
experimental dorsi -plantar flexion moment of the CP 
patients vs. those calculated healthy subjects. 

CP: Cerebral palsy, nRMSE: normalized root-mean-square error, PCC: Pearson cross-
correlation coefficient. 
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