
Received 31 March 2022, accepted 15 June 2022, date of publication 23 June 2022, date of current version 1 July 2022.

Digital Object Identifier 10.1109/ACCESS.2022.3185748

An Attack Detection Framework Based
on BERT and Deep Learning
YUNUS EMRE SEYYAR 1, ALI GÖKHAN YAVUZ2, AND HALIL MURAT ÜNVER1, (Member, IEEE)
1Department of Computer Engineering, Graduate School of Natural and Applied Sciences, Kırıkkale University, 71451 Kırıkkale, Turkey
2Department of Computer Engineering, Graduate School of Natural and Applied Sciences, Turkish-German University, 34820 Istanbul, Turkey

Corresponding author: Yunus Emre Seyyar (yunusemre.seyyar@gmail.com)

ABSTRACT Deep Learning (DL) and Natural Language Processing (NLP) techniques are improving and
enriching with a rapid pace. Furthermore, we witness that the use of web applications is increasing in
almost every direction in parallel with the related technologies. Web applications encompass a wide array of
use cases utilizing personal, financial, defense, and political information (e.g., wikileaks incident). Indeed,
to access and to manipulate such information are among the primary goals of attackers. Thus, vulnerability
of the information targeted by adversaries is a vital problem and if such information is captured then the
consequences can be devastating, which can, potentially, become national security risks in the extreme cases.
In this study, as a remedy to this problem, we propose a novel model that is capable of distinguishing normal
HTTP requests and anomalous HTTP requests. Our model employs NLP techniques, Bidirectional Encoder
Representations from Transformers (BERT) model, and DL techniques. Our experimental results reveal that
the proposed approach achieves a success rate over 99.98% and an F1 score over 98.70% in the classification
of anomalous and normal requests. Furthermore, web attack detection time of ourmodel is significantly lower
(i.e., 0.4 ms) than the other approaches presented in the literature.

INDEX TERMS Anomalous request, BERT, deep learning, web attack, multilayer perceptron, natural
language processing.

I. INTRODUCTION
Internet related technologies have been an integral and indis-
pensable aspect of our lives to the extent that Internet has
become as important as other utilities such as water, gas,
and electricity. Use of web applications has benefited from
the increase in popularity of the Internet. Web applications
are utilized via Word Wide Web (WWW). In fact, WWW
can be considered as a distributed and massive information
system, which is based on the client-server model. Browsers
are programs that regulate the relationships between clients
and servers. Uniform Resource Locator (URL) textualizes
IP (Internet Protocol) addresses the client uses when com-
municating with the server. Each device on the network has
a unique address (i.e., the IP address). Since IP addresses
are not easily memorizable, URL textualizes IP addresses
that the clients use when communicating with the server.
The acronyms used in this paper and their definitions are
presented in Table 1.

The associate editor coordinating the review of this manuscript and
approving it for publication was Luca Cassano.

When a Hypertext Transfer Protocol (HTTP) server is
running, it is open to all HTTP requests. To provide access
to the server, the HTTP gate (port) is left open in network
firewalls. HTTP requests can contain malicious pieces of
codes, because they appear to be valid HTTP requests, they
are accepted by traditional firewalls and are not thoroughly
investigated.

Attackers, generally, target web systems via HTTP proto-
col [1]. A web server responds with web pages whenever a
request is received. Web servers have tasks such as storing,
serving, and rendering web pages to clients. Communica-
tion between a web server and web pages is facilitated by
HTTP [2].

One of the most used protocols in the WWW is the HTTP
protocol and its secure extension, the HTTP Secure (HTTPS)
protocol. As with many protocols, HTTP and HTTPS pro-
tocols also have vulnerabilities. Attackers exploit these vul-
nerabilities and perform attacks such as Man in the Middle
(MITM), brute force, Distributed Denial of Service (DDoS),
SQL Injection (SQLI), and Cross Site Scripting (XSS)
attacks [3].

VOLUME 10, 2022 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 68633

https://orcid.org/0000-0001-5767-8515


Y. E. Seyyar et al.: Attack Detection Framework Based on BERT and Deep Learning

In MITM attack, the traffic between the user and the gate-
way is routed and one of the intermediate routers acts as the
real target while it is not. It sends signals to WiFi network by
combining Address Resolution Protocol (ARP) spoofing and
Secure Sockets Layer (SSL) stripping techniques. HTTPS is
modified by appending the SSL header and HTTP packet of
the user computer to the transferred data [4].

In order to consume the resources of the target, adversaries
perform a Time-Triggered Protocol (TTP) flooding attack
from the bots using the GET or POST methods of the HTTP
protocol. Using certain tools, the application source code is
accessed and a DDoS attack is performed to interrupt the
service [5].

It has been reported that despite the inherent security
measures implemented in HTTPS, information such as web
page fingerprints, packet sizes, and timing information are
leaked by HTTPS. Attackers, on the other hand, perform
brute force attacks to predict the passwords of users with
special lists prepared using such information, which is a
particularly important type of attack especially for weakly
protected web sites [3].

Sharing personal information on the Internet via web
applications whets the appetite of attackers. These web appli-
cations communicate with databases, which store personal
information belonging to users using Structured Query Lan-
guage (SQL). According to Open Web Application Security
Project (OWASP) top 10 vulnerabilities in 2021, in order of
popularity, SQLI takes the first place, and the second most
prominent attack is XSS [6]. SQLI and XSS attacks result in
retrieval of users’ information from databases or modification
of information onweb pages, among others. There are various
successful classical web attack detection methods. However,
there are problematic use cases, which cannot be satisfacto-
rily addressed by traditional and rule-based approaches.For
example, it is possible to create many different SQLI attacks
and countering every conceivable attack would require too
many rules to be constructed, which is a prohibitively cum-
bersome undertaking. Although, many SQLI attacks can be
countered by using relatively simple measures still there are
SQLI attacks, which are not easy to thwart by employing
rule-based counter measures only. Recently, Machine Learn-
ing (ML) and Deep Learning (DL) techniques in use cases
that rely on recognizing patterns have proven themselves as
better alternatives for particularly challenging attack detec-
tion scenarios. Since malicious attacks are intrinsically repet-
itive and involve codes that revolve around similar patterns,
DL approaches are highly successful in recognizing these
patterns [3]–[9].

In current ML and DL based attack detection approaches,
word embeddings such as autoencoder and word2vec are
being utilized. It is shown that using word embeddings
improves success rate in malicious attack detection tasks
when compared to the traditional ML approaches such as
rule-based models [7], [8]. Nevertheless, recent develop-
ments regarding transformers (e.g., Bidirectional Encoder
Representations from Transformers (BERT), Robustly

TABLE 1. Table of acroynms.

Optimized Bert Approach (RoBERTa)) and their remarkable
success in text classification tasks make them promising
candidates to be used in challenging attack detection use
cases.

Recent studies [1], [9]–[11] show how important web
security is for the security and privacy of users’ personal
information. Although there is a wealth of studies in this area,
we identified that there are still gaps to be filled. Considering
the OWASP reports, we were inspired to work on SQLI and
XSS, which are at the top of the list and are among the most
dangerous for users.

While SQLI attacks are server-side vulnerabilities target-
ing web application databases, XSS attacks are client-side
vulnerabilities targeting web application users. Since one
of the aforementioned attacks (XSS) targets clients and the
other (SQLI) targets servers, it is possible to state that it would
be beneficial for both sides to classify HTTP requests, which
include SQLI and XSS attacks, as normal and anomalous,
respectively.

In this paper, we propose a novel approach that detect web
attacks. Note that we specifically consider web requests that
are not encrypted (e.g., end user requests behind a firewall).
We use state-of-the-art methodologies in DL and Neural Lan-
guage Processing (NLP). We used the BERT model to obtain
the vectors corresponding to the words in the word vector
space. Then using these word vectors, we have trained sev-
eral Multilayer Perceptron (MLP) models. Our architecture
receives URLs in HTTP requests as inputs. We tokenize these
URLs using the BERT tokenizer. Afterwards these tokens
passed through the pre-trained BERT model. Resulting word
vectors are then used to train our MLP model. To the best of

68634 VOLUME 10, 2022



Y. E. Seyyar et al.: Attack Detection Framework Based on BERT and Deep Learning

our knowledge, this is the first example of BERT and MLP
models are used together in order to detect web attacks.

Our contributions in this study are listed below;
• By incorporating NLP into our framework, we show that
high performance classification, in terms of delay and
accuracy, can be achieved without data normalization.

• We demonstrate that the BERT model, which is utilized,
successfully, in NLP, can also be employed, success-
fully, for SQL language, which qualifies as a synthetic
language.

• While previous studies used a 1:1 ratio for normal and
anomalous request selections to determine model accu-
racy, we used ratios of 1:1, 1:10, and 1:20 for normal and
anomalous request selections to determine the accuracy
of our model, which is better representation of real world
scenarios.

• Our performance evaluations reveal that requests can
be rapidly tested as to whether they are anomalous or
normal requests in as low as 0.4 ms per request, there-
fore, low latency provided by our approach is one of its
defining and superior features.

The rest of the article is organized as follows. In Section II,
we present a review of prominent studies in the literature on
detecting web attacks. In Section III, we provide a detailed
description of our proposed model. In section IV, perfor-
mance evaluations of our model are provided. Conclusions
of this study are drawn in Section V.

II. RELATED WORKS
In this section, we present a systematic overview of repre-
sentative studies in the literature, which are most related to
our study. First, we briefly review ML based attack detec-
tion approaches by using synthetic datasets in Section II-A.
Second, we provide a concise overview of ML word embed-
ding based attack detection approaches utilising real-life
datasets in Section II-B. Third, we present word embedding
based attack detection approaches in Section II-C. Fourth,
we summarize studies employing BERT based techniques in
Section II-D. Finally, we express the differences of this study
from the literature in Section II-E.

A. ML BASED WEB ATTACK DETECTION USING
SYNTHETIC DATASETS
Komiya et al. [7] proposed aMLmethod for the classification
of malicious web codes. The proposed method utilizes Naive-
Bayes, Support Vector Machines, and k nearest neighbor
approaches. Accuracy of the proposed method by using syn-
thetic datasests is reported to be over 98%. Shar et al. [12]
utilized a synthetic dataset that they produced using Php-
MinerII. WEKA is used for feature extraction, and the
MLP model is used for classification. Performance evalu-
ations reveal that accuracy obtained in the study is 80%.
Fidalgo et al. [13] worked on the detection of a set of
prominent SQLI attacks. The proposed model runs on PHP
slices, which until recently was known as the most popular
server-based language. They employed a dataset created with

Software Assurance Reference Database (SARD). They used
Convolutional Neural Network (CNN), Recurrent Neural
Networks (RNN), and Long Short-Term Memory (LSTM) in
conjunction with Dropout layers models. It is reported that an
accuracy of 95% is obtained by using the Rmsprop optimizer.
Shadid et al. proposed a hybrid deep learning model with
cookie analysis engine for web attacks and attacker profiling.
They created a large dataset and trained CNN-based deep
learning models. The accuracy of the model was reported to
be 99.94% [17].

B. ML BASED WEB ATTACK DETECTION USING REAL-LIFE
DATASETS
Hoang [8] investigated attack detection on web applica-
tions, which can access networks with vulnerabilities. It is
advocated that existing methods work for static websites,
therefore, a ML based model that works on both static and
dynamic websites is proposed. The proposed method uti-
lizes Naive Bayes and J48 Decision Tree methods. Perfor-
mance evaluations with 300 anomalous websites from the
Goldrake dataset and 100 normal websites from world uni-
versities’ websites, shows accuracy over 93% and over 99%,
respectively. Liang et al. [15] proposed a model that does
not require feature selection unlike the studies overviewed
in the preceding paragraph. The system design is based on
two RNN models that use normal requests to detect attacks
(i.e., one of the RNN models is a supervised learning model
while the other one is an unsupervised learning model). The
authors trained normal patterns of requests by using Web
Application Firewall (WAF) and Spanish Research National
Council (CSIC) datasets. The accuracy of this approach was
found to be over 98%. Tian et al. [20] studied the detection of
malicious web shells. Word2Vec was used for feature extrac-
tion in malicious web acceptance detection, and CNN was
used for classification. A dataset consisting of 3,691 mali-
cious web shell instances and 3,990 normal instances was
used. It is reported that it is possible to achieve an F1-score
over 98%. Gong et al. [14] proposed a model with the obser-
vation that annotation errors can be misleading in model
training. They worked on model uncertainty that could help
find annotation errors, as well as the misclassification caused
by these errors. They used CSIC, Apache-2006, and Apache-
2017 datasets. The F1-score of the model using CNN reached
over 98% success. Yu et al. studied the detection of malicious
requests to web servers. They used SVM in the last layer
of their TextCNN text classification model. They used the
CSIC 2010 dataset to train the model and achieved over 99%
accuracy [18].

C. WORD EMBEDDING BASED WEB ATTACK DETECTION
APPROACHES
Yu et al. [9] proposed a method against SQLI attacks,
which pose a major security threat, extracted word vec-
tors using Word2Vec on SQL queries, and classified them
by using SVM, which has a detection time of 0.89 ms.
Mac et al. [1] proposed a model for detecting malicious

VOLUME 10, 2022 68635



Y. E. Seyyar et al.: Attack Detection Framework Based on BERT and Deep Learning

TABLE 2. Related studies on web attack detection.

patterns in HTTP/HTTPS requests. They used the CSIC
2010 dataset. The system model incorporates an autoen-
coder for feature extraction. Furthermore, ModSecurity is
integrated with an autoencoder. Performance evaluations
revealed that an F1-score of 94% is achieved, which has a
detection time of 5.1 ms. Tian et al. [11] proposed a model
on the detection of web attacks targeting cloud data centers,
which facilitate fairly high volume of data transfers, exacer-
bated with the development of the Internet of objects. This
team utilized two DL models working simultaneously. They
used M-ResNet with Word2Vec for feature extraction and
CNN for classification. They used CSIC 2010, FWAF, and
HttpParams datasets. They achieved an accuracy of 99% by
using the CSIC 2010 dataset. Tekerek [16] investigated web-
based attacks. He used bag of words and CNN in his work.
CSIC 2010 was used as the dataset. Accuracy and F1-score
values achieved in the study is higher than 96%. Chen et al.
proposed an SQLI detection system using Word2Vec, one of
the NLPmethods that does not rely on a background rule, and
they used CNN for classification. They performed their tests
with 4000 normal and 4000 SQLI samples. Accuracy and
F1-score of the system is reported to be over 98% [19]. A set
of studies on web attack detection with data sets, classifiers,
and success metrics are shown in Table 2.

D. BERT BASED TECHNIQUES
Devlin et al. [20] designed a language representation model
called BERT to pre-train left and right-sided presentments
by co-conditioning unlabeled data, unlike traditional lan-
guage models. This model achieved an F1-score over 83%.
Farahani et al. [21] investigated BERT’s performance in NLP
for Persian due to its success and growing popularity in

English. By training the BERT model for Persian language,
they showed that it outperformed previous studies at oper-
ations such as text classification and sentiment analysis.
Martin et al. [22] hypothesised that pre-trained models are
insufficient for NLP tasks in French and conducted a feasi-
bility study on this subject. They worked on large and small
datasets obtained from the web and created a BERT model.
They stated that the model they trained, achieved the best
performance level to date. Antun et al. [23] studied the perfor-
mance of the BERT model for Arabic, since Arabic is a mor-
phologically rich language, and showed that the pre-trained
BERT model performed well. Cui et al. [24] applied word
masking in Chinese text due to the success of BERT in various
NLP tasks. They demonstrated that the accuracy achieved by
this model in assorted natural language operations such as
emotion classification and sentence pair matching is high.
Rojas [25] stressed that one of the strategies of the spam filter
for deception is the choice of a synonym for the message
or similar words. He experimented with decision tree, kNN,
SVM, logistic regression, naive Bayes, and MLP with BERT.
He achieved accuracy values over 96%. Wong et al. [26]
investigated MITM attacks due to the increasing importance
of IoT devices. They built a BERT-based model and tested
various traditional machine learning methods. They showed
that MLP gave better results. Li et al. [27] used BERT for
replacing vulnerable words with similar ones according to
semantics and grammar, which achieved accuracy values over
97.8%.

E. DIFFERENCE OF THIS STUDY FROM THE LITERATURE
As briefly outlined in the previous paragraphs there is a
rich literature on web attack detection. However, attack

68636 VOLUME 10, 2022



Y. E. Seyyar et al.: Attack Detection Framework Based on BERT and Deep Learning

TABLE 3. Examples of normal and anomalous requests in CSIC 2010, FWAF, and httpParams datasets.

detection time is as important as the accuracy of the proposed
approaches. We hypothesized that word placement models
can be utilised in attack detection to improve detection time
without sacrificing the detection accuracy. As such, in this
study, we employed BERT to process HTTP/HTTPS requests
for attack detection. Note that BERT has been successfully
utilised in various languages (e.g., English, French, Persian,
Arabic languages) and NLP processes, therefore, we pro-
posed that SQL can also be considered as a synthetic lan-
guage, which can be processed by BERT. In this context
we considered each HTTP request as a word and proposed
a hybrid model that uses the BERT model for these word
vectors and the MLP model for classification. To the best of
our knowledge, BERT and MLP models are used together
for the first time to detect web attacks in the study. Our
results show the success of the proposed model in synthetic
languages in terms of both processing time and accuracy.

III. MATERIALS AND METHODS
The system architecture we propose for detecting web attacks
is based on the integration of the BERT model and the MLP
model. The BERT model is utilised to transform the words
into vectors. For the classification of HTTP requests into
normal and anomalous sets the MLP model is employed.
CSIC 2010 [28], FWAF [29], and httpParams [30] datasets
constitute the inputs of the system. System performance is
characterized by using the accuracy and F1-score metrics,
which are widely utilised in literature. In the rest of this
section, first, we introduced the datasets so that our ultimate
goal in classification can be comprehended fairly easily. Sec-
ond, we present the DL part of the architecture. Third, the
evaluation metrics used in this study are elaborated. Fourth,
the overall system architecture is described in detail.

A. DATASETS
Selection of the datasets to be used in classifying web attacks
is of utmost importance. In fact, the main performance metric
of this study is the correct classification of normal and anoma-
lous requests. In this studywe opt to utilizeHttpParams, CSIC
2010, and FWAF datasets, which consist entirely of web
attack patterns and have been employed inmany studies in the
literature, therefore, we can compare the performance of our
approaches against many other solutions. The first dataset we
utilize is the CSIC 2010 dataset, which includes 36,000 nor-
mal requests and more than 25,000 anomalous requests.

TABLE 4. Details of datasets.

The dataset was automatically generated, and it targeted an
e-Commerce web application’s traffic. This dataset contains
different attack types (e.g., SQLI, XSS, etc.). The second
dataset is generated from HTTP traffic recorded by the Web
Attacks Firewall (WAF). In order to obtain a larger dataset
without duplicate elements, URLs from different domains
are combined from names, source paths, and attribute keys
through domain merging. It consists of 1,290,000 normal
requests and 48,000 anomalous requests. The third dataset
is the HttpParams Dataset on GitHub. This dataset was pro-
duced with different tools, and it contains 19,304 normal
requests, and 11,763 anomalous requests. All the datasets are
shown in Table 4

URLs consist of several mandatory and optional parts
such as protocol, domain name, top-level domain, folder, file
name, and file extension. A URL created from these parts
is considered a normal request. However, a URL created by
injecting code from SQL or script languages (e.g., SELECT,
UNION, ALERT) are considered anomalous requests. Exam-
ples of normal and anomalous requests extracted from the
datasets we used in our study are shown in Table 3.

B. DEEP LEARNING
DL can be defined as a class ofML techniques that uses a plu-
rality of nonlinear hidden layers for feature extraction, trans-
formation, pattern analysis, and classification [31]. DL based
solution approaches have found widespread applications in
many domains such as industrial applications, medical infor-
matics, robotics, computer vision, predictive maintenance,
finance, text processing, and classification problems in many
domains. DL methods have given very successful results in
processing many data types such as video, audio, and text
[32]. DL includes computational models with multiple layers
of processing so that the available data can be represented at
multiple levels of abstraction [32]. Constituents of the utilized
deep neural network that we used can be listed as: perceptron,

VOLUME 10, 2022 68637



Y. E. Seyyar et al.: Attack Detection Framework Based on BERT and Deep Learning

activation function, cost function, and fully connected lay-
ers, which are explained in the rest of this subsection.

1) PERCEPTRON
Deep neural networks are based on the operating logic of
the human brain. Indeed, deep neural networks are com-
puter programs that imitate biological neural networks. The
atomic building blocks of these programs are known as
perceptrons [33].

The perceptron has input and output layers. All input val-
ues are multiplied by their weights, their sums are taken, and
a bias value is added to this sum. The result is given to an
activation function, the resulting error is input to an optimiza-
tion function, and consequently the weights are updated to
minimize error.

2) ACTIVATION FUNCTION
The activation function outputs a value in response to an
incoming input value. It is important that the derivative of
the activation function can be easily calculated because the
derivative of the activation function is used in backpropaga-
tion, therefore, it is imperative to choose a function whose
derivative is easily calculated so that the calculation does not
slow down [34].

3) LOSS FUNCTION
Training of a neural network is achieved by updating the
weights. The update mechanism is actually a feedback based
error minimisation operation. The error is the differences
between the actual value and the prediction. The loss func-
tion’s goal is to bring this error closer to zero. Optimization
functions are used to minimize the error, if possible close to
zero.

4) FULLY CONNECTED LAYER
In the fully connected layer all neurons in the relevant layer
are connected to all the neurons in the previous layers. In clas-
sification problems, the number of neurons in the last layer is
equal to the number of classes.

a: MLP
MLP type multilayer artificial neural networks consist of
input, hidden, and output layers. The aggregate input to the
neurons of each layer is obtained by summing the weighted
neuron outputs in a lower layer. Neuron outputs are obtained
depending on the activation function defined for a particular
neuron. In an MLP network each node is fully connected to
every node in the preceding and proceeding layers. Super-
vised learning is typically utilised in MLPs. The architecture
of MLP in its simplest form is presented in Figure 1.

b: EVALUATION METRICS
There are several metrics used to evaluate the performance of
the proposed model in terms of classification accuracy. The
metrics we utilise in performance evaluations are: Accuracy,
Precision, Recall, F1-score, which are computed by using

FIGURE 1. MLP architecture.

TP (True Positive), TN (True Negative), FP (False Positive),
and FN (False Negative) values. In the study we employ the
F1-score and accuracy metrics. However, in order to obtain
the F1-score metric, the other metrics need to be calculated.
Accuracy is defined as the ratio of correct predictions to the
total number of predictions as given in Eq. (1)

Accuracy =
TP+ TN

TP+ FN + FP+ TN
. (1)

Precision is a metric to express how many of the values
predicted as positive are actually positive as presented in Eq. 2

Precision =
TP

TP+ FP
. (2)

Recall is used to quantify how much of the values that should
be predicted as positive are predicted as positive. We would
like to reiterate that True Positive Rate is another term used
for recall. They both are utilised to measure how accurately
the model predicts true positive values as presented in Eq. 3.

Recall =
TP

TP+ FN
. (3)

True Negative Rate is a measure of how accurately the
model predicts true negative values as presented in Eq. 4

TNR =
TP

TP+ FP
. (4)

False Positive Rate is the ratio of those predicted to be
1 even though the value is 0 as given Eq. 5.

FPR =
FP

FP+ TN
. (5)

False Negative Rate is defined as the ratio of those pre-
dicted to be 0 even though the true value is 1, which is
provided in Eq. 6.

FNR =
FN

FN + TP
. (6)

The ROC (Receiver Operating Characteristic) is used to
generate a Precision / TNR report as given in Eq. 7.

ROC =
Precision
TNR

. (7)

The F1-score actually is the harmonic mean of the Preci-
sion and Recall values as given in Eq. (8)

F1 = 2 ∗
Precision ∗ Recall
Precision+ Recall

. (8)

68638 VOLUME 10, 2022



Y. E. Seyyar et al.: Attack Detection Framework Based on BERT and Deep Learning

FIGURE 2. Overall pre-training and fine-tuning procedures for BERT.

C. BERT
A typical URL has a standard structure unless it is modified
by adversaries. In literature, to analyse URLs their standard
structure is exploited by treating them as regular sentences.
As such, analysis of URLs (e.g., word prediction, word clas-
sification) can be performed by utilising the rich repertoire
of NLP techniques. Word embedding methods are among the
most effective NLP approaches. One such method is BERT,
which is reported to more successful than the other word
embedding methods. BERT is an open-source, pre-trained
NLP model developed by Google AI group researchers [20].
Note that, both autoencoders and word embeddings are uti-
lized to efficiently represent the data through projections onto
appropriate vector spaces. Indeed, like autoencoders, word
embedding models learn a vector space embedding for some
data.

By adding a suitable output layer to a pre-trained BERT
model, significantly better results can be obtained in lan-
guage processing tasks when compared to classical NLP
methods [35]. BERT uses two basic learning strategies to
overcome contextual constraints and facilitates a bidirec-
tional association. Masked Language Modeling (MLM) is
performed before theword strings are transferred to the BERT
model. Note that, 15% of the word strings are replaced with
the [MASK] token. In this manner, MLM attempts to predict
the original value of masked words based on the context
formed by other unmasked words in the sequence.

In Next Sentence Prediction (NSP) sentence pairs are taken
as inputs to the model in the BERT training process. The
objective is to train themodel in such away that themodel can
predict whether the second sentence in the pair is the next sen-
tence in the document. In the training of themodel, the second
sentence in the original document is chosen for 50% of the
inputs, and in the other 50%, the second sentence is randomly
selected. In fact, a successfully trained model can determine
that the sentence chosen randomly is not related to the first
sentence. BERT architecture, which includes pre-training and
fine-tuning procedures, is presented in Figure 2 [17].

BERT can be considered as a stack of encoders and
decoders. However, in the traditional encoder-decoder archi-
tecture, some learned characteristics especially in the rela-
tively distant history are forgotten as the input gets longer.
As RNN evaluates incoming words sequentially, it preserves
the integrity of words. However, as the input becomes longer,

FIGURE 3. BERT embedding. The sentences shown on the left panel are
represented by the vector of weights assigned by BERT tokenizer on the
right panel.

the relationship established between far separated words
can diminished significantly. With the Attention mechanism,
there have been significant developments in the field of NLP,
such as the Transformer architecture and Google’s BERT.
Attention, the problem of decreasing the value of the lead-
ing words in RNN can be alleviated because the encoder
transmits to decoder the hidden state information generated
after processing each word. Transformers, which evaluate
the incoming data left-to-right/right-to-left with parallel pro-
cessing and multi-head attention mechanisms, have better
performance in comparison to traditional encoder-decoder
architectures. The main difference of BERT when compared
to RNN, Attention, and Transformers is its double-sided
examination of the text, which results in its improved han-
dling of the relationship with the words on the right and
left of the word under processing, and learning the content
with MLM and NSP. The transformer network used by BERT
consists of encoders and decoders that include self-attention
mechanisms and feed forward networks. WordPiece coding
[36], which is an encoder architecture, creates word vectors
by comparing the positions of a word in sentences.

A BERT tokenizer splits the sentence into tokens, which is
illustrated in Figure 3. To solve the classification problem,
tokens are inserted into the beginning (i.e., [CLS] token)
and end (i.e., [SEP] token) of a sentence. The maximum
length setting used in text processing also applies here. If the
sentence is shorter than the maximum length, then the empty
fields are filled with zeros. However, if it is longer than
the maximum length then the excess part is removed. Upon
completion of this task, a sentence is divided into tokens,
and eventually the tokens are indexed. Hidden attention cor-
responding to only the first token is taken for simplicity.
Then, for each word, the vector distance in the word space
is determined [37].

D. SYSTEM ARCHITECTURE
There are many successful examples of classification
approaches based on feature vectors obtained from text inputs
in the literature. Inspired by the success of such studies, in our
framework we also utilised a similar approach (i.e., features
obtained by BERT tokenizer from text inputs are classified
by using MLP).

The first step in the automated analysis of text data is to
transform the text into a representation that can conveniently

VOLUME 10, 2022 68639



Y. E. Seyyar et al.: Attack Detection Framework Based on BERT and Deep Learning

FIGURE 4. Tokenization of URLs. BERT symbol embeddings (i.e., token embeddings) and positions of words in sentences are utilized to
express (positional) information and sentence pairings as input fields in the task. A distinction is made between the first and second sentences.
A unique placement learning section (segment) contains additional embeddings for representation and input.

TABLE 5. Examples of 80 × 768 matrix with word vector weights
representation after BERT Tokenizer process. Each row corresponds to a
word and the maximum number of words in queries is limited by eighty.

be interpreted by a computer, which typically is accom-
plished by resorting to NLP techniques. Note that, in the
last decade significant improvements in NLP techniques have
been achieved due to the groundbreaking advances in DL
techniques.

Since attackers typically try tomodify theURLs to perform
web attacks, it is, indeed, of utmost importance to preserve
each word and character in URL strings. Therefore, to pro-
vide the integrity of URLs, in our framework, the words or
sentences (i.e., each of the tokenized URLs is considered as
a sentence) obtained from URLs are converted to numerical
values, which are then merged to form word vectors in the
word vector space.

As such our system architecture is built upon a text clas-
sification infrastructure. Therefore, as in many text classifi-
cation schemes, tokenization of the text via BERT tokenizer
is the primary step in our framework, which is illustrated in
Figure 4.

The BERT tokenizer takes a set of words with a predeter-
mined maximum length parameter, which is chosen as 80 in
our framework. In fact, we empirically determined that using
80 as the maximum length parameter is sufficient for the vast
majority of our URL queries. As stated earlier, to guarantee
the uniformity of the set sizes, shorter sentences are padded
with zeros. By processing the input URLs the BERT tokenizer
outputs a feature metrics with a dimension of 80 × 768.
An example 80×768 matrix with vector weights is presented
in Table 5.

Each of the row vectors in the input matrix of size
80 × 768 corresponds to the specific words in the input
query except for the first (i.e., [CLS] token) and the last (i.e.,
[SEP] token) rows. The first row is the classifier vector for
the entire sentence (i.e., URL). However, probability values
calculated by BERT are not sufficient to determine whether a
URL is normal or anomalous with high performance. As a
remedy we decided to incorporate a feed forward neural
network (i.e., MLP) to our architecture, which accept the
BERT output as its input. Hence, the row vectors (each of
length 768) are utilised to train the MLP model for the classi-
fication of URLs. MLP architecture that we utilized consists
of 6 fully connected layers (i.e., linear layers), each followed
by batch normalization and Rectified Linear Unit (ReLU)
layers. The last layer of the MLP architecture is a Soft-
max [38] layer that outputs predictions for a given URL
query. While linear layers determine the weights and fea-
tures, other layers are mainly used to regularize the outputs.
The overall system architecture is illustrated in Figure 5.
Unlike the other results in the literature, data pre-processing
(other than BERT tokenizer) is not needed in our framework,
which results in lower processing times. Indeed, BERT has
proven to be highly effective in various NLP tasks such
as information extraction, sentiment analysis and question
answering [39].

Note that we experimented with other learning architec-
tures other than MLP. For example, we built CNN-based
models with various depths and obtained and average accu-
racy of up to 0.9579 accuracy. Nevertheless, the MLP-based
model that we created give the best performance when com-
pared to other learning models.

IV. RESULTS AND DISCUSSION
Computational experiments to explore the performance of
our proposed framework is conducted by utilising a com-
puting system, which includes two NVIDIA RTX 2080 TI
GPUs, 64 GB of system RAM, and 16 cores of an AMD

68640 VOLUME 10, 2022



Y. E. Seyyar et al.: Attack Detection Framework Based on BERT and Deep Learning

FIGURE 5. Proposed system architecture combining BERT tokenizer and six fully connected layers MLP model.

processor. The software employed in this study includes
Python, PyTorch, and BERT library.

Training phase is comprised of epochs, each of which
takes four minutes on the average. The most time consuming
operation within each epoch is the processing of URLs by
the BERT tokenizer. Instead of processing queries one by
one, we first processed all queries together and save resulting
vectors. To obtain the best MLP architecture we empirically
explored the design space (e.g., number of layers, neurons,
and loss functions). After experimenting with a large number
of MLP architectures, all trained for 200 epochs, the best
performing architecture is determined, which is elaborated
in subsection III-D. Note that the selected model is then
further fine-tuned until improvements in accuracy between
epochs are reduced below 0.0001. Although, we continued
the training process up until 350 epochs we observed that
the training process almost always reach a plateau much
earlier.

While various datasets for this problem is available (as
explained in subsection III-A), we initially opted to utilise the
CSIC 2010 dataset, which consists of 50,000 samples in seven
different categories (i.e., normal queries and six different
anamolus queries such as SQLI, XSS, CMDI, etc.,). Since
our objective is to create a system for detection of anomalous
queries, we re-labeled entries in this dataset as normal and
anomalous samples (i.e., all six anamolous query categories
are merged to form a single anamolous category). Our initial
MLP architecture was a simpler artificial neural network with
three hidden layers, which results in 99% accuracy when it is
tested by data extracted from the CSIC 2010 dataset. How-
ever, when it was tested on another dataset (i.e., httpParams
dataset) its performance in terms of accuracy was slightly
better than random predictions. It was then hypothesized that
samples between datasets were too dissimilar to each other to
be considered comparable. In order to test this hypothesis, the
same model was trained on the httpParams dataset and then

tested with the CSIC 2010 dataset, which resulted in a similar
outcome (i.e., slightly better accuracy then random predic-
tions). Therefore, we decided to merge all three available
datasets (i.e., CSIC 2010, FWAF, and HttpParams), which
was to be used as our main and only dataset. To enable the
uniformity of our unified dataset the eliminate attributes of
queries which were not present in all of them. Nevertheless,
performance evaluations of our architecture is done by using
the unified dataset.

As explained in subsection III-B4.b, we utilised accu-
racy and F1-score as our performance metrics. We divided
our dataset into training (85% of the data) and validation
(15% of the data) parts.

Accuracy as a function of epochs for training and val-
idation phases are presented in Figure 6a and Figure 6b,
respectively. Accuracy in training phase surpass 98.00% after
seventh epoch and it stays above 99.90% after ninety first
epoch. After one hundred sixty second epoch accuracy is
above 99.98%, which determines the convergence level of
our framework. Accuracy in validation phase exceed 98.30%
after forty seventh epoch and it never falls below 99.70%
after forty ninth epoch. Beginning with one hundred and third
epoch accuracy is always higher than 99.80%.

In Figure 7a and Figure 7b, F1-score as a function of
epochs for training and validation phases are given, respec-
tively. Beginning with the twenty first epoch F1-score val-
ues exceed 96.00% in training phase and after the eighty
first epoch F1-score values are always higher than 99.80%.
F1-score values settle around 99.80% once the number
of epochs surpass one hundred fifty. In validation phase,
F1-score values exceed 88.00% and 97.00% after forty sev-
enth epoch and forty ninth epoch, respectively. F1-score
converges to 98.70% after one hundred and seventy second
epoch. Note that the relatively large variations in F1-score
values are primarily due to the weighted loss used in F1-score
computations.

VOLUME 10, 2022 68641



Y. E. Seyyar et al.: Attack Detection Framework Based on BERT and Deep Learning

FIGURE 6. Accuracy as a function of epochs for training and validation. In training phase accuracy surpasses 98.00% after seventy
epochs and never drops below 99.98% after one hundred sixty two epochs. Likewise, in validation phase forty seven epochs and
one hundred and three epochs are the thresholds for 98.30% and 99.80% accuracies, respectively.

FIGURE 7. F1-score as a function of epochs for training and validations. In training phase F1-score surpasses 96.00% after twenty
epochs and never drops below 99.80% after one hundred fifty epochs. Likewise, in validation phase forty seven epochs and one
hundred and seventy epochs are the thresholds for 88.00% and 98.70% F1-score, respectively.

TABLE 6. Table of k-cross validation for 10 fold.

We present a 10-fold cross validation analysis in Table 6.
For each folds, average of the highest values are obtained
as 99.84%, 99.75%, 98.57%, 98.07% training accuracy, vali-
dation accuracy, training F1-score, and validation F1-score,
respectively. Furthermore, AUC (Area Under Curve) ROC
curve for 10-fold cross validation is presented in Figure 8a,
whereas, the change in AUC for 50 epochs is plotted in
Figure 8b. Our evaluations reveal that there is no robustness
issue with our solution.

TABLE 7. Attack detection times.

In our framework the BERT tokenizer is utilised to cre-
ate feature vectors from query sentences, which are than
processed by the classifier. We first experimented with 1D
convolutional model with a linear output for classification.
Although initial tests with this approach reached a certain
accuracy level, it was not enough to provide a satisfactory
solution to our problem. Later we experimented with anMLP
classifier and fine-tuned the MLP model (as explained in
subsection III-D) to find the best compromise between speed
and precision. As presented in section IV our architecture
achieves 99.98% accuracy and 98.70% F1-score on valida-
tion. Furthermore, apart from the BERT feature extraction,
it takes 0.4 ms to complete the entire classification operation,
which is less than half of the delay values reported in the
literature [1], [9], which is presented in Table 7.

Accuracy reached by our solution is similar to the accuracy
values reported in [7], [8], [11], [15]. However, unlike the
aforementioned studies, we report computation time values in

68642 VOLUME 10, 2022



Y. E. Seyyar et al.: Attack Detection Framework Based on BERT and Deep Learning

FIGURE 8. K-fold analysis: (a) AUC ROC curve and (b) AUC as a function of epochs.

our manuscript, which is one of the contributions of our solu-
tion. Indeed, our computation times are significantly lower
than the results reported in the literature [1], [9]. Furthermore,
our solution does not require pre-processing unlike the solu-
tions in [7], [8], [11], [15]. Moreover, present studies in the
literature utilize datasets with approximately equal numbers
of normal and anomalous requests, which does not reflect
the actual occurrence frequency of anomalous request in real
life (i.e., in real life the occurrence frequency of anoma-
lous requests is much lower than the frequency of normal
requests). Therefore, for the better representation of the real
life we worked with datasets of which 50%, 10%, and 5%
are anomalous requests and we show that the performance
obtained with all three cases are the same.

In summary, this is the first study in the literature which
shows that BERT can be successfully utilised for web attack
detection with high accuracy. Moreover, incorporation of
NLP to our framework results in high performance classifi-
cation without the need for data normalization, which leads
to extremely low delay.

V. CONCLUSION
Adversaries exploit web request queries to take advantage of
vulnerabilities of web applications. In this study, we proposed
a novel approach based on BERT and DL techniques for the
detection of web attacks. We utilized BERT model for the
representation of URLs and MLP classifier to discriminate
the normal and anomalous queries. Experimental evaluations
show that the representational capability of URLs by BERT
model is high, which in turn leverages high performance web
attack detection significantly. The novel contributions of this
study are itemized as follows:
• We utilised an aggregate dataset by merging three differ-
ent datasets (CSIC 2010, FWAF, httpParams), which is
used in both training and validation phases. Therefore,
our framework is capable of generalizing data from
multiple datasets successfully. To the best of our knowl-
edge, these datasets were utilised separately in other
studies. Nevertheless, our framework is the first one that

integrate all three datasets within the context of web
attack detection through query classification.

• Data normalization is a process utilised in other studies
on web attack detection, which increases the transla-
tional load. However, our framework does not require
data normalization, yet our performance results are par
with reported results on web attack detection in the
literature. Nonetheless, our processing time is lower then
the other studies.

• Performance evaluations reveal that our framework is
capable of representing URLs successfully and results in
web attack detection with an F1-score and an accuracy
and as high as over 97%, 99%, respectively. As such
our framework can be utilised in practical real world
applications and scenarios.

In its current form our proposed model runs on a Linux
platform. However, our model can also be modified to run on
Android, IoS, and Mac platforms, which is among our future
research agenda.

REFERENCES
[1] H. Mac, D. Truong, L. Nguyen, H. Nguyen, H. A. Tran, and D. Tran,

‘‘Detecting attacks on web applications using autoencoder,’’ in Proc. 9th
Int. Symp. Inf. Commun. Technol. (SoICT), 2018, pp. 416–421.

[2] I. Kresna A. and Y. Rosmansyah, ‘‘Web server farm design using personal
computer (PC) desktop,’’ in Proc. 10th Int. Conf. Inf. Technol. Electr. Eng.
(ICITEE), Jul. 2018, pp. 106–111.

[3] J. Luxemburk, K. Hynek, and T. Čejka, ‘‘Detection of HTTPS brute-force
attacks with packet-level feature set,’’ in Proc. IEEE 11th Annu. Comput.
Commun. Workshop Conf. (CCWC), Jan. 2021, pp. 0114–0122.

[4] A. R. Chordiya, S. Majumder, and A. Y. Javaid, ‘‘Man-in-the-middle
(MITM) attack based hijacking of HTTP traffic using open source
tools,’’ in Proc. IEEE Int. Conf. Electro/Inf. Technol. (EIT), May 2018,
pp. 0438–0443.

[5] S. Bishnoi, S. Mohanty, and B. Sahoo, ‘‘A deep learning-based methodol-
ogy in fog environment for DDOS attack detection,’’ in Proc. 5th Int. Conf.
Comput. Methodol. Commun. (ICCMC), Apr. 2021, pp. 201–206.

[6] D. Wichers, ‘‘Owasp top-10 2013,’’ OWASP Foundation, Annapolis, MD,
USA, Tech. Rep., Feb. 2013.

[7] R. Komiya, I. Paik, and M. Hisada, ‘‘Classification of malicious web code
by machine learning,’’ in Proc. 3rd Int. Conf. Awareness Sci. Technol.
(iCAST), Sep. 2011, pp. 406–411.

[8] X. D. Hoang, ‘‘A website defacement detection method based on machine
learning,’’ in Proc. Int. Conf. Eng. Res. Appl. Da Nang, Vietnam: Springer,
2018, pp. 116–124.

VOLUME 10, 2022 68643



Y. E. Seyyar et al.: Attack Detection Framework Based on BERT and Deep Learning

[9] L. Yu, S. Luo, and L. Pan, ‘‘Detecting SQL injection attacks based on text
analysis,’’ in Proc. 3rd Int. Conf. Comput. Eng., Inf. Sci. Appl. Technol.
(ICCIA), 2019, pp. 95–101.

[10] Y. Tian, J. Wang, Z. Zhou, and S. Zhou, ‘‘CNN-Webshell: Malicious web
shell detection with convolutional neural network,’’ in Proc. VI Int. Conf.
Netw., Commun. Comput., 2017, pp. 75–79.

[11] Z. Tian, C. Luo, J. Qiu, X. Du, and M. Guizani, ‘‘A distributed deep
learning system for web attack detection on edge devices,’’ IEEE Trans.
Ind. Informat., vol. 16, no. 3, pp. 1963–1971, Mar. 2020.

[12] L. K. Shar and H. B. K. Tan, ‘‘Predicting common web application
vulnerabilities from input validation and sanitization code patterns,’’ in
Proc. 27th IEEE/ACM Int. Conf. Automated Softw. Eng. (ASE), Sep. 2012,
pp. 310–313.

[13] A. Fidalgo, I. Medeiros, P. Antunes, and N. Neves, ‘‘Towards a deep
learning model for vulnerability detection on WEB application variants,’’
in Proc. IEEE Int. Conf. Softw. Test., Verification Validation Workshops
(ICSTW), Oct. 2020, pp. 465–476.

[14] X. Gong, J. Lu, Y. Zhou, H. Qiu, and R. He, ‘‘Model uncertainty based
annotation error fixing for web attack detection,’’ J. Signal Process. Syst.,
vol. 93, pp. 187–199, Feb. 2020.

[15] J. Liang, W. Zhao, and W. Ye, ‘‘Anomaly-based web attack detection: A
deep learning approach,’’ in Proc. VI Int. Conf. Netw., Commun. Comput.,
2017, pp. 80–85.

[16] A. Tekerek, ‘‘A novel architecture for web-based attack detection using
convolutional neural network,’’ Comput. Secur., vol. 100, Jan. 2021,
Art. no. 102096.

[17] W. B. Shahid, B. Aslam, H. Abbas, S. B. Khalid, and H. Afzal,
‘‘An enhanced deep learning based framework for web attacks detection,
mitigation and attacker profiling,’’ J. Netw. Comput. Appl., vol. 198,
Feb. 2022, Art. no. 103270.

[18] L. Yu, L. Chen, J. Dong, M. Li, L. Liu, B. Zhao, and C. Zhang, ‘‘Detecting
malicious web requests using an enhanced TextCNN,’’ in Proc. IEEE 44th
Annu. Comput., Softw., Appl. Conf. (COMPSAC), Jul. 2020, pp. 768–777.

[19] D. Chen, Q. Yan, C. Wu, and J. Zhao, ‘‘SQL injection attack detection and
prevention techniques using deep learning,’’ in Proc. J. Phys., Conf., 2021,
vol. 1757, no. 1, Art. no. 012055.

[20] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, ‘‘BERT: Pre-training
of deep bidirectional transformers for language understanding,’’ 2018,
arXiv:1810.04805.

[21] M. Farahani, M. Gharachorloo, M. Farahani, and M. Manthouri, ‘‘Pars-
BERT: Transformer-based model for Persian language understanding,’’
2020, arXiv:2005.12515.

[22] L. Martin, B. Müller, P. Javier Ortiz Suárez, Y. Dupont, L. Romary,
É. Villemonte de la Clergerie, D. Seddah, and B. Sagot, ‘‘CamemBERT: A
tasty French language model,’’ 2019, arXiv:1911.03894.

[23] W. Antoun, F. Baly, and H. Hajj, ‘‘AraBERT: Transformer-based model for
Arabic language understanding,’’ 2020, arXiv:2003.00104.

[24] Y. Cui,W. Che, T. Liu, B. Qin, and Z. Yang, ‘‘Pre-training with whole word
masking for Chinese BERT,’’ 2019, arXiv:1906.08101.

[25] S. Rojas-Galeano, ‘‘Using BERT encoding to tackle the mad-lib attack in
SMS spam detection,’’ 2021, arXiv:2107.06400.

[26] H. Wong and T. Luo, ‘‘Man-in-the-middle attacks on MQTT-based IoT
using BERT based adversarial message generation,’’ in Proc. KDD, 2020,
pp. 1–6.

[27] L. Li, R. Ma, Q. Guo, X. Xue, and X. Qiu, ‘‘BERT-ATTACK: Adversarial
attack against BERT using BERT,’’ 2020, arXiv:2004.09984.

[28] C. T. Giménez, A. P. Villegas, and G. A. Marañón, ‘‘HTTP data set
CSIC 2010,’’ Inf. Secur. Inst. CSIC (Spanish Res. Nat. Council), Serrano,
Madrid, Tech. Rep., 2010.

[29] F. Ahmad. (2017). Web Application Firewall. [Online]. Available:
https://github.com/faizann24/Fwaf-Machine-Learning-driven-Web-
Application-Firewall

[30] Morzeux. (2020). Httpparams. [Online]. Available: https://github.
com/Morzeux/HttpParamsDataset

[31] L. Deng and D. Yu, ‘‘Deep learning: Methods and applications,’’ Found.
Trends Signal Process., vol. 7 nos. 3–4, pp. 197–387, 2013.

[32] Y. Bengio, I. Goodfellow, and A. Courville, ‘‘Deep learning,’’ Nature,
vol. 521, no. 7553, pp. 436–444, May 2016.

[33] S. K. Vasudevan, S. R. Pulari, and S. Vasudevan, Deep Learning: A
Comprehensive Guide. Boca Raton, FL, USA: CRC Press, 2022.

[34] T. Szandała, ‘‘Review and comparison of commonly used activation
functions for deep neural networks,’’ in Bio-Inspired Neurocomputing.
Singapore: Springer, 2021, pp. 203–224.

[35] K. Schachinger, ‘‘A complete guide to the Google rankbrain algorithm,’’
Search Engine J., 2020.

[36] Y. Wu, M. Schuster, Z. Chen, Q. V. Le, and M. Norouzi, ‘‘Google’s neural
machine translation system: Bridging the gap between human andmachine
translation,’’ 2016, arXiv:1609.08144.

[37] J. Alammar. A Visual Guide to Using Bert for the First Time.
Accessed: Jun. 28, 2022. [Online]. Available: https://jalammar.github.io/a-
visual-guide-to-using-bert-for-the-first-time/

[38] G. Pang, L. Cao, and C. Aggarwal, ‘‘Deep learning for anomaly detection:
Challenges, methods, and opportunities,’’ in Proc. 14th ACM Int. Conf.
Web Search Data Mining, Mar. 2021, pp. 1127–1130.

[39] A. Roy and S. Pan, ‘‘Incorporatingmedical knowledge in BERT for clinical
relation extraction,’’ in Proc. Conf. Empirical Methods Natural Lang.
Process., 2021, pp. 5357–5366.

YUNUS EMRE SEYYAR was born in Kırıkkale,
Turkey. He received the Graduate degree from the
Computer Engineering Department, Erciyes Uni-
versity, Kayseri, in 2008, and the M.Sc. degree
in computer engineering from Kırıkkale Univer-
sity, Kirikkale, where he is currently pursuing
the Ph.D. degree in computer engineering. He is
also employed as a Scientific Program Expert by
The Scientific and Technological Research Coun-
cil of Turkey (TUBITAK). His responsibilities at

TUBITAK include coordination of the advisory committee, management
of research and development projects on cyber security and networks,
and contributing to research funding vision and policies of TUBITAK.
His research interests include cyber security, deep learning, and natural
languages processing.

ALI GÖKHAN YAVUZ received the Ph.D. degree
in computer engineering from Yıldız Technical
University, Istanbul, Turkey. He is currently a
Professor and the Head of the Department of
Computer Engineering, Turkish-German Univer-
sity. His current research interests include systems
and network security, cloud computing, and big
data.

HALIL MURAT ÜNVER (Member, IEEE)
received the Ph.D. degree in machine engineering
fromKırıkkale University, Kırıkkale, Turkey. He is
currently an Associate Professor with the Depart-
ment of Computer Engineering, Kırıkkale Univer-
sity. His current research interests include robotics,
computer networks, and network security.

68644 VOLUME 10, 2022


