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Observability, controllability and stability of a
nonlinear RLC circuit in form of a Duffing oscillator

by means of theoretical mechanical approach

Cem Civelek1

In this research article, observability, controllability and stability of a nonlinear RLC circuit with a nonlinear capacitor is
investigated as a Duffing oscillator beginning with the dissipative equations of generalized motion using Lagrange-dissipative
model ({L,D} -model briefly). The force related to the potential energy, equilibria, and their well known stability properties
are given using state space approach. Prerequisite that the condition for a Legendre transform is fulfilled, for the same
system, also Hamiltonian of the system is found. Using Hamiltonian and dissipation function, dissipative canonical equations
are obtained. These equations are written in state space form. Then the equality to the same results obtained using the
dissipative equations of generalized motion related equilibria and their stability was shown. Thus a Lyapunov function as
residual energy function (REF) is justified in terms of stability of the overall system. As last step, different electrical and
mechanical (physical) realization possibilities are discussed.

K e y w o r d s: observability, controllability, Duffing oscillator/equation, equations of generalized motion, dissipative
canonical equations, Lyapunov stability function

1 Introduction

In order to examine an oscillating mechanical system,
Georg Duffing introduced a nonlinear second order differ-
ential equation in 1918, [1]. The concomitant equation is
named as the Duffing equation. The involved oscillation
is called the Duffing oscillation.

As outlined in the literature, dynamic systems which
are described by Duffing equation occurs virtually in ev-
ery field of science. Duffing oscillations, naturally, exist
not only in mechanical but also in engineering, chaotical,
biological, etc systems.

There are a lot of books on nonlinear dynamical sys-
tems and chaos covering Duffing equation/oscillator like
[2–5]. A special source as a book on the Duffing equa-
tion is [6]. Different solution and analysis and synthesis
approachs are found for example in [7–10]. Mathematical
and physical foundations of Lagrangians and Hamiltoni-
ans are covered in [11–13] where [13] is one of the very rare
books including conditions for a Legendre transform. On
the other hand, a physical or an engineering system can
be modeled by means of a Lagrangian L , a generalized ve-
locity proportional Rayleigh dissipation function D and
a Hamiltonian H depending on tensorial variables in co-
variant and contravariant forms. This was shown in [14]
that covers also the dissipative canonical equations. The
extended Hamiltonians in different tensorial forms to ob-
tain equations of generalized motion in case of dissipa-
tive systems directly are given in [15] which includes also
higher order {L,D} -models. Accordingly, higher order

Lagrangians, dissipation functions and nonconservative
Hamiltonians are presented in this study. Practical real-
ization of a nonlinear capacitor in a basic form is given for
example in [16]. In the reference [17], {L,D} -model of the
Duffing equation in form of a RLC circuit can be found,
where the circuit contains a nonlinear capacitor, voltage-
charge characteristics of which is an odd function of order
three as given here. Another source on nonlinear capacitor
with a voltage-charge characteristics of order five is [18].
The reference [19] is about obtaining Lyapunov functions
as residual energy functions in a systematic and differ-
ent way than the other approaches. [20] includes control
of chaotic Duffing equation with uncertainty in all pa-
rameters. Observability and controllability of nonlinear
systems in general are given in [21]. Observability using
Lie derivatives and controllability using Lie brackets of
nonlinear systems are explained mathematically in detail
in the reference [22], where the approach converts to the
usual linear case of controllability and observability ma-
trices, when the system is a linear one. The sources [23]
and [24] are referred in order to show the practical mean-
ing and importance of nonlinear physical systems.

But observability and controllability analysis of Duff-
ing equation/oscillator in general lacks in the literature.
And this analyze is performed first time using theoreti-
cal mechanical approach including dissipation with state
space method as far as we know. Additionally, Lyapunovs
direct (or second) method is applied as residual energy
function and this is not considered for Duffing equa-
tion/oscillator in any other literature before. This pro-
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vides more precise results from the point of physics. Other
stability result given in some internet sources are not cor-
rect which can be proven easily.

In this article a nonlinear RLC circuit as in Fig. 1 with
a nonlinear term, namely capacitor C is investigated as
a Duffing oscillator within the framework of Lagrange-
dissipative model. Assuming that Legendre transform is
provided the Hamiltonian of the nonlinear RLC circuit
is obtained. Dissipative canonical equations are derived
out of Hamiltonian and dissipative function. As far as
we know, for the first time system under consideration
is analysed by means of observability, controllability and
also stability using Lyapunov function which is valid for
linear and nonlinear systems. On the other hand, Lya-
punov function as a residual energy function achieved as
sum of Hamiltonian and negative form of dissipative func-
tion has been used for the analysis of the stability. Finally,
the conclusions that are established has been stated.

2 The equations of dissipative

generalized motion

The RLC circuit with a linear resistance R , linear
inductor L∗ , nonlinear capacitor C and the driving elec-
tromotive force E = E0 cos(ωt) is given below.

LE u
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u
R

u
C

C

R

Fig. 1. RLC circuit with a nonlinear capacitor

A nonlinear capacitor can be realized by filling the
space between the two conductor plates with a nonlin-
ear ferroelectric material such as barium titanate. Then
the voltage-charge characteristics will not be a straight
line anymore. Assuming that the voltage-charge charac-
teristics of this nonlinear capacitor C is approximated
through an odd function of order three as uC = c1q+c2q

3,
where q is the charge, c1 and c2 are numeric constants.
Applying Kirchoffs voltage law, one obtains

L∗
di

dt
+Ri+ uC = E ⇒

d2q

dt2
+

R

L∗

dq

dt
+

c1
L∗

q +
c2
L∗

q3 =
E0

L∗
, (1)

On the other hand, the most general form of Duffing
oscillator has the form below

ẍ+ rẋ+ ω2
0x+ βx3 = γ cos(ωt) . (2)

Althoug different definitions of Duffing equation (2)

already exist (for example using ω2
0 < 0 in some sources

on nonlinear differential equations), we prefer here the

physical one with ω2
0 > 0 which converts to a harmonic

oscillator with damping (without damping when r = 0 )
when β = 0.

Comparing (1) and (2), one can determine the gener-
alized elements and the normalized generalized external
force as follows

ẍ+ rẋ+ ω2
0x+ βx3 = γ cos(ωt) ,

q̈ +
R

L
q̇ +

1

L∗
(c1q + c2q

3) =
E0 cos(ωt)

L∗
, (3)

r =
R

L∗
, ω2

0 =
c1
L∗

, β =
c2
L∗

, γ =
E0

L∗
,

where, L∗, R, c1 ∈ R
+ , ωt 6= (2n + 1)π2 , n ∈ Z. As can

be seen again, when c2 = 0, Duffing oscillator converts
to a linear damped oscillator.

The generalized velocity proportional Rayleigh dissi-
pation function for the case is

∂D

∂q̇
=

R

L∗
q̇ ⇒ D(q̇) =

R

2L∗
q̇2. (4)

Accordingly, the related {L,D} -model with an au-
tonomous Lagrangian L, the related momentum and its
first time derivative have the form given by

L = L∗

2 q̇2
︸ ︷︷ ︸

T (q̇)

− ( c1
2L∗

q2 + c2
4L∗

q4)
︸ ︷︷ ︸

U(q)

D(q̇) = R
2L∗

q̇2

⇒
p = L∗q̇

ṗ = −( c1
L∗

q + c2
L∗

q3)
,

(5)
where the external generalized force E0 cos(ωt) may
be included in the generalized velocity proportional
(Rayleigh) dissipation function D(q̇)i in form q̇γ cos(ωt)a
as negative loss or in the Lagrangian as negative potential
in form of −qγ cos(ωt) to obtain the equations of gener-
alized motion using extended Euler-Lagrange differential
equation: T (q̇)i is the kinetic and U(q) is the potential
energy parts of the Lagrangian.

Using the {L,D} -model of the system, the differential
equation (1) can be obtained through the extended Euler-
Lagrange differential equation which is given below

d

dt

∂L

∂q̇k
−

∂L

∂qk
+

∂D

∂q̇k
= Fk , k = 1, 2, . . . , f , (6)

where k is the degree of freedom.

The force related potential energy of the Duffing os-
cillator via its {L,D} -model is obtained as follows. The
force on nonlinear capacitive element related with the po-
tential energy given above is

Fq = −∇U(q) ≡ − gradU(q) = −
( c1
L∗

q +
c2
L∗

q3
)
, (7)

which is equal to the first time derivative of the general-
ized momentum as seen.
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3 State space equations of the Duffing oscillator

Renaming the generalized coordinates and velocities
as follows

q(t) = q1(t) , q̇1(t) = q2(t) . (8)

The differential equation of dissipative generalized motion
in (1) for the case takes the following form and can be
rewritten as

d

dt

[
q1
q2

]

︸ ︷︷ ︸

q̇

=

[
0 1

−
c1+c2q

2

1

L∗
− R

L∗

]

︸ ︷︷ ︸

[A]

[
q1
q2

]

︸ ︷︷ ︸

q

+

[
0
1
L∗

]

E0 cos(ωt)

︸ ︷︷ ︸

Fe

, y = q1
︸ ︷︷ ︸

h(q)

, (9a)

=

[
q2

−
c1q1+q3

1
+Rq2

L∗

]

︸ ︷︷ ︸

f(q)

+

[
0
1
L∗

]

E0 cos(ωt)

︸ ︷︷ ︸

g(q)u

.
(9b)

3.1 Observability and controllability of the oscillator

To prove the nonlinear observability and controllabil-
ity of the Duffing oscillator, the following general system
in the control affine form will be used

q̇ = f(q) +
m∑

i=1

gi(q)ui , yi = hi(q) , (10)

where q ∈ R
n is the state vector, u ∈ R

m is the input
vector and y ∈ R

p , p < n is the output vector. Further,
f ,g ,h are to be smooth vector fields.

A nonlinear system is then locally observable in P0,
when the rank of the observability matrix Os equals n ,
where the observation space Os is defined as the gradient
of the vector of all Lie derivatives Ln

fh . And the Lie

derivatives of h with respect to f are

L0
fh = h(q) , L1

fh = ∇h(q) · f (q) , . . . ,

Ln
fh = ∇[Ln−1

f h] · f (q) . (11)

Accordingly, this leads here

∇h(q)=[1 0]⇒







h(q) = q1

L1
fh = [1 0]

[
q2

−
c1q1+c2q

3

1
+Rq2

L∗

]

= q2 .

(12)

The vector of all Lie derivatives and its multiplication
with ∇ are

G = [L0
fh L1

fh] ⇒ ∇G =

[
1 0
0 1

]

. (13)

And the determinant of which has rank two, ie the system
is (locally) observable.

Now, let us examine the controllability of the Duffing
oscillator

The system in (8) above is locally accessible about a
point P0 ∈ R

n if the accesibility distribution Q spans Rn

space when n equals the rank of q and the accessibility
distribution Q is defined

Q
[
g1, g2, . . . , gm, [ad1

f ,g1], . . . , [ad
1
f ,gm], . . . ,

[adm−1
f ,gm]

]
, (14)

where [adk
gi
,gj ]; k ∈ N0 is higher order Lie bracket. Using

the Lie bracket, one achieves

[f ,g ] = −

[
0 1

−
c1+3c2q

2

1

L∗
− R

L∗

]

︸ ︷︷ ︸

[J]

[
0
1
L∗

]

=

[

− 1
L∗

R
(L∗)2

]

, (15)

where [J ] is the Jacobian of the matrix [f (q)]. Accessi-
bility distribution Q is

Q =
[
g , [f ,g ]

]
=

[

0 − 1
L∗

1
L∗

R
(L∗)2

]

, (16)

and it has rank two everywhere, therefore the system is
accessible and controllable.

4 Stability of the equilibrium

points of the oscillator

Although stability investigation for Duffing oscillator
using chacteristic equations are well known for a relatively
long time, nevertheless they are given here in order to

completeness.

This system can be linearized around equilibria. The
equilibrium points in phase plane are achieved when
(q; q̇) = (0; 0) and the external force E0 cos(ωt)/L

∗ = 0.

Without the external force, the damped Duffing oscilla-
tor will end up at one of its stable equilibrium points and
they are given in what follows

q

L∗
(c1 + c2q

2)
︸ ︷︷ ︸

∇U(q)

= 0 . (17)

The first root q11 = 0 is always an equilibrium point.
The other equilibrium points can be found as in what
follows

a) c1 > 0, c2 > 0 (hardening case)
In this case the equilibrium points are conjugated com-

plex in form of q12,13 = ±j
√

c1/c2.

b) c1 > 0, c2 < 0 (softening case)

The equilibria of this case are in the form of q12,13 =

±
√

c1/|c2| .
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Using Jacobian matrix [J ] of the system and its eigen-
values, stability of these equilibria may be better under-
standable. With the following characteristic equations,
one can obtain the results:

|λ[I]− [J ]| =

∣
∣
∣
∣

λ −1
c1+3c2q

2

1

L∗
λ+ R

L∗

∣
∣
∣
∣
=

λ2 + λ
R

L∗
+

c1 + 3c2q
2
1

L∗
= 0 . (18)

a) For the equilibrium q11 = 0, the characteristic equa-
tion of the Jacobian matrix J [A] related to the system
is

λ2 +
R

L∗
λ+

c1
L∗

= 0 . (19)

If c1 ∈ R
+, which is the case for us, then the eigenval-

ues are both negative:

λ1 + λ2 = −
R

L∗

λ1λ2 =
c1
L∗

⇒ λ1 < 0 , λ2 < 0 , (20)

ie the equilibrium point q11 = 0 is stable.

b) For the other equilibrium points in hardening case,

q12,13 = ±j
√

c1/c2 which are conjugated complex,

the characteristic equation of the Jacobian matrix [J ]
related to the system is

λ2 +
R

L∗
−

2c1
L∗

= 0 . (21)

Herewith the sign of the roots are as follows

λ1 + λ2 = −
R

L∗

λ1λ2 = −
2c1
L∗

⇒ λ1 > 0 , λ2 < 0 . (22)

Therefore, the equilibrium points q12,13 = ±
√

c1/c2
are unstable, phase portraits of which are each in the
form of a saddle point, where the trajectories are hy-
perbola like curves having the vertical and horizontal
axes as asymptotes.

c) In softening case, the equilibria are real in form of

q12,13 = ±
√

c1/|c2| and the case is just like in the
hardening case and it will not be given again. Relating
the equilibria, and their stability, see Fig. 2.

5 The Legendre transform and

the Hamiltonian of the system

Prerequisite to that the condition for a Legendre trans-
form given below

∣
∣
∣

∂2L

∂q̇j∂q̇k

∣
∣
∣ =

∣
∣
∣
∂pj
∂q̇k

∣
∣
∣ = L∗ 6= 0 , j, k = 1, 2, . . . , f , (23)

that is already fulfilled here, then the Hamiltonian H
and through this the extended Hamiltonian H can be
determined as follows

H =
p2

2L∗
+
( c1
2L∗

q2 +
c2
4L∗

q4
)

︸ ︷︷ ︸

H(p,q)

+
R

L∗
qq̇ , (24)

where the extended Hamiltonian is obtained for a system
with f degree of freedom using

H =

f
∑

k=1

∂L

∂q̇k
− L+

f
∑

k=1

∂D

∂q̇k
qk . (25)

6 Dissipative canonical equations

and equilibria of the system

The dissipative canonical equation of this lossy system
is given by

q̇ =
∂H

∂p
=

p

L∗
, (26a)

ṗ = −
∂H

∂q
= −

c1
L∗

q −
c2
L∗

q3 −
R

L∗
q̇ . (26b)

Equilibria condition for such (dissipative) Hamiltonian
systems in general is

(q̇k ; ṗk) =
(∂H

∂pk
;
∂H

∂qk

)

= (0 ; 0) . (27)

For our case, this is as follows

∂H

∂p
= 0 ⇒ p = 0 ,

∂H

∂q
= 0 ⇒ c1q + c2q

3 = −Rq̇ . (28)

The right part of the equation above is a nonlinear ho-
mogenious differential equation of order one and as can
be seen, normally dissipative part of the equations cannot
be ignored when finding equilibrium points for dissipative
Hamiltonian systems. But here one finds out that among
generalized momentum and generalized velocity, a simple
relation in the following form already exists

p = L∗q̇ = 0 where q̇ = 0 ∀L∗ ∈ R
+ , (29)

which leads to the same equilibria and roots as in the case
∇U(q) = 0.

Moreover, (26) can be rewritten in form of a ma-
trix equation including normalized external generalized
force(s) as follows

∂

∂t

[
q
p

]

=
1

L∗

[
0 1

−c1 − c2q
2 −R

]

︸ ︷︷ ︸

A

[
q
p

]

+

[
0
1
L∗

]

E0 cos(ωt) ,

(30)
where A is the system matrix as before. Similarities
among state space form (9a) obtained through equations
of dissipative generalized motion and state space form
(30) obtained through dissipative canonical equations are
obvious. Eigenvalues for stability have also the same prop-
erties and will not be presented again.
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Fig. 2. The equilibria and their stability

6 Lyapunov function as residual energy

function and stability of the system

The residual energy function for this case is

H =
p2

2L∗
+
( c1
2L∗

q2+
c2
4L∗

q4
)

−

∫ [
R

2(L∗)2
p2
]

dt . (31)

Since the REF is defined as below

H = H+ −

∫ [ f
∑

k=1

∂D(q̇1, q̇2, . . . , q̇f )

∂q̇k
q̇k

]

dt ,

0 < H < ∞ , ∀ t ∈ R
+
0 , (32)

and the first time derivation of this REF, which is total
power, is

dH

dt
= −

f
∑

k=1

∂D(q̇1, q̇2, . . . , q̇f )

∂q̇k
q̇k . (33)

The REF of this dissipative system is

H =
[ p2

2L∗

︸︷︷︸

T (p)

+
( c1
2L∗

q2 +
c2
4L∗

q4
)

︸ ︷︷ ︸

U(q)

]

−
R

L∗

∫

q̇ dt , (34)

with the first time derivative

Ḣ(pk, q
k) = −

R

L∗
q̇ . (35)

This shows that REF fulfills all the properties of a Lya-
punov function, For stability of the system, the necessary
condition is given in what follows

−
R

L∗
≤ 0 . (36)

That is, it must be positive semidefinite. And as such the

Fig. 3. The trajectories in phase space for marginal and asymptotic
stability

origin point (q; p) = (0; 0) in phase space is marginal
or asymptotically stable and the trajectories in phase
space are either in form of ellipses around origin or spirals
toward the origin, as shown in the Fig. 3.

Besides as in the example (charge formulation in which
the generalized coordinate q is the charge), such a phys-
ical system can be realized in different ways. Three of
them are given below:

a) Using flux formulation (Ψ -is flux): a paralel nonlinear
RLC circuit in which the current through the nonlinear
inductive element L is iL and the generalized external
force is the current source I = IL.

b) Using translational mechanical (or displacement/posi-
tion) formulation (x is translational displacement/posi-
tion): a dissipative harmonic oscillator consisting of a
mass m, a damper D and a spring k in which the force
on the nonlinear spring k is Fk = ckx+ dkx

3 and the
generalized external force is the force F = Fx cos(ωt).

c) Using rotational mechanical (or angular) formulation
(θ is angular displacement): a dissipative rotational
harmonic oscillator consisting of a moment of inertia
I, a rotational damper Dr and a torsional spring kr in
which the torque on the nonlinear torsional spring kr
in which the torque on the nonlinear torsional spring
kr is Mr = crθ + drθ

3 and the generalized external
force is the torque M = Mθ cos(ωt).

7 Conclusions

In conclusion in a systematic manner it was demon-
strated that for Duffing oscillator/equation as a nonlinear
system in form of a nonlinear RLC circuit containing a
nonlinear capacitor, when {L,D}-model and thus Hamil-
tonian are known, then the system is analysed by means
of observability, controllability and stability in this fro-
mount which was performed first time for Duffing oscilla-
tor/equation in general here. Moreover, stability analysis
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can be performed using Lyapunov function as residual
energy function. As seen, this kind of Lyapunov func-
tion can be constructed using Hamiltonian and dissipa-
tive function together for linear and nonlinear systems as
well.
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