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Abstract: Neodymium iron boron magnets (NdFeB) play a critical role in various technological
applications due to their outstanding magnetic properties, such as high maximum energy product,
high remanence and high coercivity. Production of NdFeB is expected to rise significantly in the
coming years, for this reason, demand for the rare earth elements (REE) will not only remain high
but it also will increase even more. The recovery of rare earth elements has become essential to
satisfy this demand in recent years. In the present study rare earth elements recovery from NdFeB
magnets as new promising process flowsheet is proposed as follows; (1) acid baking process is
performed to decompose the NdFeB magnet to increase in the extraction efficiency for Nd, Pr, and Dy.
(2) Iron was removed from the leach liquor during hydrolysis. (3) The production of REE-oxide from
leach liquor using ultrasonic spray pyrolysis method. Recovery of mixed REE-oxide from NdFeB
magnets via ultrasonic spray pyrolysis method between 700 ◦C and 1000 ◦C is a new innovative
step in comparison to traditional combination of precipitation with sodium carbonate and thermal
decomposition of rare earth carbonate at 850 ◦C. The synthesized mixed REE- oxide powders were
characterized by X-ray diffraction analysis (XRD). Morphological properties and phase content of
mixed REE- oxide were revealed by scanning electron microscopy (SEM) and Energy-dispersive X-ray
(EDX) analysis. To obtain the size and particle size distribution of REE-oxide, a search algorithm
based on an image-processing technique was executed in MATLAB. The obtained particles are
spherical with sizes between 362 and 540 nm. The experimental values of the particle sizes of REE-
oxide were compared with theoretically predicted ones.

Keywords: rare earth elements; recycling; NdFeB; magnet; ultrasonic spray pyrolysis

1. Introduction

Rare earth elements (REEs) have a wide range of uses in technological products
and applications. Due to the increased demand and supply risk, most REEs have been
added to the list of critical metals. The production of REEs from primary resource causes
environmental problems [1]. The recovery of REEs from waste materials is the most suitable
strategy to find the solution of environmental problems and ensure the sustainability for
production of REE raw materials in the future, according to an increased demand in
industrial application. Most developed countries are importing REEs from China; 95%
of REEs are supplied from China and in addition to this situation, export quotas of REEs
applied by China have increased the export prices of REEs [2].

In order to produce rare earth elements oxides (REE-oxides), most researchers have
studied different hydrometallurgical and pyrometallurgical strategies such as dry diges-
tion [3], acid baking processes [4] and carbothermal reduction of ores and concentrates
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with subsequent leaching using strong acids [5] aiming at higher REE extractions. Demol
et al. [4] found that sulfation reaction of monazite with acid was virtually complete after
baking at 250 ◦C for 2 h, resulting in >90% solubilization of REEs, thorium and phosphate.
To prevent silica gel formation and to increase the extraction efficiency of REEs, before
leaching, the dry digestion process was performed with concentrated HCl [6]. In contrast
to application of an acid baking, Ma et al. reported [7] that rare earth recovery from
eudialyte concentrate is achieved by avoiding silica-gel formation using a dry digestion
process at room temperature. Generally, a direct leaching process was also applied for the
treatment of red mud to obtain a high REE extraction efficiency [8,9]. Because of the many
disadvantages of direct leaching processes such as high consumption of leaching agents
and non-selectivity [10], Borra et al. [11] reported that alkali roasting–smelting–leaching
processes allow the recovery of aluminum, iron, titanium, and REEs from bauxite residue.
Generally, recovery of REEs from secondary materials is a new possibility for production
of these critical metals.

Therefore, recycling has considerable advantages over processing natural ores and
concentrates on account of energy effectiveness and selectivity [12]. Neodymium iron boron
magnets (NdFeB) are the most valuable REE secondary resource because they contain a
high content (approximately 20%) of REEs, neodymium (Nd), dysprosium (Dy) and some
REEs in minor quantities, such as praseodymium (Pr). Between 20 and 25% of REEs
produced worldwide are used in the production of NdFeB. Increasing future production of
hard disks, automotive applications, motors, speakers, air conditioners, electronic devices,
electric bicycles and wind turbines provides a strong driving force for finding a new process
for recycling spent NdFeB magnets [13–15]. Furthermore, an alternative product that can
replace NdFeB magnets in today’s technologies in terms of performance and cost has not
been developed yet. Therefore, the recycling of spent NdFeB magnets is the most promising
effective alternative for the solution of the supply problem of Nd, Dy and Pr.

Önal et al. [16] studied recycling of NdFeB magnets using sulfation, selective roasting
and water leaching, enabling the production of a liquid with at least 98% rare earth purity.
Furthermore, 98% extraction efficiency of REEs from NdFeB magnets was obtained by the
acid-baking process with nitric acid [17]. After the acid baking process and subsequent
water leaching of the treated concentrate, the produced suspension was filtrated in order
to separate a pregnant leaching solution. To produce the REE oxides from leach liquor, all
the proposed methods in the literature are completely based on precipitation methods by
using various precipitation agents such as sodium carbonate and oxalic acid [18,19].

It is known that REE-carbonate or REE-oxalate can be produced from impurities
present in sulfuric liquors using oxalic acid and sodium carbonate by a precipitation
method [20,21]. It was reported that high purity REE-oxide (99.2%) was achieved using
oxalic acid as a precipitation agent. Relatively lower purity RE-oxide was produced using
sodium carbonate during precipitation [18]. The precipitation behavior of REEs with
precipitation agents including oxalate, sulfate, fluoride, phosphate, and carbonate was
examined using thermodynamic principles and calculations [22]. It was found that the pH
of the system, types of the precipitation agent and present anions in the leach liquor have a
noteworthy impact on the purity of the REE precipitants.

In contrast to the precipitation method, the production of nanosized REEs using an
ultrasonic spray pyrolysis method is missing in the literature. Ultrasonic spray pyrolysis
(USP) combines the ultrasound used for dispersing the precursor solution into droplets
and chemical decomposition of the dissolved material inside the droplets at elevated tem-
peratures, resulting in the formation of fine metallic, oxidic and composite powder [23–25].
This technique has been successfully used in the production of REE-oxide, the results of
which are Y2O3, La2O3 Gd2O3, and CeO2 [26–29]. The USP method enables synthesized
spherical and fine REE-oxide in one-step. Moreover, the technique is capable of metal
oxide with controllable chemical composition, particle size and morphology of particles
by manipulating process parameters, which for the precursor type and concentration,
reaction atmosphere, carrier gas flow rate, and reaction temperature [30–32]. In the present
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study, a new sustainable method was proposed for the production of mixed REE-oxide
from REE-rich leach liquor. This proposed work summarizes the following operations:
1. Grinding and sieving; 2. Acid baking; 3. Calcination; 4. Leaching with water and
5. Ultrasonic spray pyrolysis, as shown at Figure 1.
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Figure 1. The proposed strategy for preparation of REE- oxides from spent NdFeB magnets.

In the final step of ultrasonic spray pyrolysis, the produced nitric acid shall be recycled
and sent to the acid baking process. This study aims at investigating the conditions required
to produce mixed REE-oxides in the combined hydrometallurgical process (acid baking
with water dissolution and ultrasonic spray pyrolysis process). A literature review reveals
that this information is currently not reported for the production of mixed RE-oxide using
leach liquor. The proposed route promotes the enhancement of the circular economy
of critical raw materials/REEs and could provide a high potential to increase resource
efficiency for spent NdFeB magnets.

2. Experimental
2.1. Materials, Acid Baking, and Water Leaching

Waste NdFeB magnets used during the experiments were supplied in bulk form. De-
magnetization was not necessary. Bulk and brittle NdFeB magnet pieces were crushed by
jaw crusher Retsch BB 50, (Retsch GmbH, Haan, Germany) using dry ice to prevent magnet
powders from catching fire. The crushing process was repeated three times to obtain the
magnet powders to suitable powder’s size. Nitric acid (65%) was used for acid baking
without dilution and was purchased from VWR International GmbH, Darmstadt, Germany
in analytical grade. All reagents were used without further purification. All solutions were
prepared using deionized water. 16.6-gram magnet powders were dissolved in 500 mL of
2 molar HNO3 acid solution to determine the chemical composition of the magnets. The
chemical analysis of obtained solution was performed using ICP-OES analysis (SPECTRO
ARCOS, SPECTRO Analytical Instruments GmbH, Kleve, Germany). Elemental composi-
tion of the NdFeB was determined by X-ray fluorescence (XRF) spectroscopy (Panalytical
WDXRF spectrometer (Malvern Panalytical B.V., Eindhoven, The Netherlands)).

The extraction of REEs from NdFeB magnets was performed by nitric acid baking
and a subsequent water leaching. The acid baking process was employed using highly
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concentrated HNO3 (65%) with a 1:5 solid/liquid (S/L) ratio. Water was first added to the
magnet powders to promote the ionization of the nitric acid before the acid baking process.
After waiting 1 h, the mixture was calcined at 200 ◦C for 2 h. Water leaching experiments
were performed in a 500 mL four-neck glass reactor equipped with a heating mantle and
temperature controller (IKA Werke GmbH, Staufen im Breisgau, Germany) The leaching
solution was kept under 550 revolutions/min agitation by a mechanical stirrer. Water
leaching experiments were conducted with a 1:15 solid/liquid (S/L) ratio for 90 min. The
leaching mixture was filtered using the filtering set up to separate the leaching solution
from leach residue. Chemical content in the leach liquor was analyzed by ICP-OES to
determine the purity of the leaching solution containing REE. The theoretical background
of acid baking with nitric acid and water leaching process was reported elsewhere [17].

2.2. Ultrasonic Spray Pyrolysis Method for Production of RE-Oxide and Their Characterization

Very fine aerosol droplets were obtained from a leach solution using an ultrasonic
atomizer (PRIZNano, Kragujevac, Serbia), with a frequency 1.75 MHz in an ultrasonic
field obtained by 3 ultrasonic transducers. The aerosol was carried with nitrogen flow
rate 1.0 L/min into in quartz tube (1.0 m length and 0.021 m diameter) between 700 ◦C
and 1000 ◦C, placed in a Ströhlein Furnace, Selm, Germany. The flow rate of nitrogen was
measured using special flowmeter gas unit (YOKOGAWA Deutschland GmbH, Ratingen).
One step ultrasonic spray pyrolysis lab-scale horizontal equipment was shown in Figure 2.
Experimental parameters were given in Table 1.
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Figure 2. One step ultrasonic spray pyrolysis lab-scale horizontal equipment: (a)—gas flow regu-
lation; (b)—ultrasonic aerosol generator; (c)—furnace with the wall heated reactor; (d)—collection
bottles; e—gas inlet, f—gas outlet.

Table 1. Experimental parameters of ultrasonic spray pyrolysis method.

Samples Codes
Concentration
of Nd(NO3)3

(g/L)

Concentration
of Pr(NO3)3

(g/L)

Concentration
of Dy(NO3)3

(g/L)

Reaction Temp
(◦C)

N2 Flow Rate
(L/min)

Ultrasonic
Frequency

(MHz)

S1 0.458 0.130 0.010 700 1.0 1.75
S2 0.458 0.130 0.010 800 1.0 1.75
S3 0.458 0.130 0.010 900 1.0 1.75
S4 0.458 0.130 0.010 1000 1.0 1.75

The SEM analysis of particles obtained by ultrasonic spray pyrolysis was performed
at JSM 7000F by JEOL, (Construction year 2006, Japan) and EDX-analysis using Octane
Plus-A by Ametek-EDAX, (construction year, 2015, USA) with Software Genesis V 6.53 by
Ametek. XRD Analysis of RE-oxides powders was performed using Bruker D8 Advance
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with LynxEye detector (Bruker AXS, Karlsruhe, Germany). X-ray powder diffraction
patterns were collected on a Bruker-AXS D4 Endeavor diffractometer in Bragg–Brentano
geometry, equipped with a copper tube and a primary nickel filter providing Cu Kα1,2
radiation (λ = 1.54187 Å).

3. Results and Discussion

Mixed RE-Oxide powders were synthesized by a one-step USP method from leach
liquor. Thermodynamic investigations of a possible reaction were conducted by HSC
software package 6.12 (Outotec, Espoo, Finland). Various reaction temperatures from
700 ◦C to 1000 ◦C were tested to investigate their role on the phase formation of RE-
Oxide. The mixed REE-Oxide powders were characterized by X-ray diffraction analysis,
scanning electron microscopy. To reveal size and size distribution of mixed RE-Oxide, SEM
micrographs were examined via image-processing techniques in MATLAB (MathWorks,
Natick, MA, USA).

3.1. Characterization of Scrap NdFeB Magnet

The magnet composition was determined by X-ray fluorescence (XRF). The major
elements of the NdFeB magnet powder are Fe, Nd, Pr as major elements and the trace
amounts of Mn, Co, Pd, Al and Si, as shown in Table 2.

Table 2. Chemical composition of NdFeB magnet powders determined by XRF.

Composition Na2O Al2O3 SiO2 MnO Fe2O3 Co3O4 CuO

Concentration (%) 0.34 0.42 0.24 1.97 68.1 0.70 0.14

Composition Ga2O3 As2O3 Nb2O5 PdO Pr2O3 Nd2O3 Tb4O7

Concentration (%) 0.20 0.21 0.12 0.24 5.72 20.4 0.70

The contents of the NdFeB magnets were measured using inductively coupled plasma
optical emission spectroscopy (ICP-OES). The ICP-OES analysis results of NdFeB magnet
is given in Table 3.

Table 3. Chemical composition of NdFeB magnet powders sample.

Composition B Co Cr Cu Dy

Concentration (mg/L) 278 245 <1 32.6 210

Composition Fe Mo Nd Ni Pr

Concentration (mg/L) 210,000 <1 7580 <1 2340

ICP-OES analysis showed the presence of Fe, Nd, and Pr as the major elements and
Cu and Co as minor elements.

X-ray diffraction (XRD) analyses were conducted to identify the phases in the NdFeB
magnet powders. XRD analysis results of NdFeB magnet powders were given in Figure 3.

According to XRD patterns, the powder sample was well crystallized in the Nd2Fe14B
phase. The X-ray diffraction peaks could be indexed to the tetragonal structure with space
group P42/mnm (JCPDS card 40-1028).

Scanning Electron Microscopy (SEM) analyses were performed to observe the mor-
phology of the NdFeB magnet powders, as shown at Figure 4.



Metals 2021, 11, 716 6 of 13Metals 2021, 11, x FOR PEER REVIEW 6 of 13 
 

 

 
Figure 3. XRD pattern of NdFeB magnet powders. 

 
Figure 4. SEM analysis of NdFeB magnet powders. 

 
Figure 5. EDS-analysis of NdFeB magnet powders. 

3.2. Production of REE-Oxide and Their Characterization 
The production of mixed REE-oxides powder from scrap NdFeB magnet by nitric 

acid baking and water leaching followed by ultrasonic spray pyrolysis method was 
investigated. The concentration of metals ions in the leached solution were determined 
using ICP-OES analysis. The chemical composition of leach liquor obtained after the water 

10 20 30 40 50 60 70 80 90

In
te

ns
ity

Diffraction angles (2θ)

 Nd2Fe14B

JCPDS : 00-040-1028 

Figure 3. XRD pattern of NdFeB magnet powders.

Metals 2021, 11, x FOR PEER REVIEW 6 of 13 
 

 

 
Figure 3. XRD pattern of NdFeB magnet powders. 

 
Figure 4. SEM analysis of NdFeB magnet powders. 

 
Figure 5. EDS-analysis of NdFeB magnet powders. 

3.2. Production of REE-Oxide and Their Characterization 
The production of mixed REE-oxides powder from scrap NdFeB magnet by nitric 

acid baking and water leaching followed by ultrasonic spray pyrolysis method was 
investigated. The concentration of metals ions in the leached solution were determined 
using ICP-OES analysis. The chemical composition of leach liquor obtained after the water 

10 20 30 40 50 60 70 80 90

In
te

ns
ity

Diffraction angles (2θ)

 Nd2Fe14B

JCPDS : 00-040-1028 

Figure 4. SEM analysis of NdFeB magnet powders.

As shown at Figure 5, Energy Dispersive Spectroscopy (EDS) results demonstrate that
NdFeB magnet powders primarily consist of Fe and Nd. EDS results are in good agreement
with the ICP analysis results but due to the small amount of the other elements, they cannot
be detected by EDS.
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3.2. Production of REE-Oxide and Their Characterization

The production of mixed REE-oxides powder from scrap NdFeB magnet by nitric acid
baking and water leaching followed by ultrasonic spray pyrolysis method was investigated.
The concentration of metals ions in the leached solution were determined using ICP-OES
analysis. The chemical composition of leach liquor obtained after the water leaching
process is illustrated in Table 4. Leach liquor of the same chemical composition was used
in all USP experiments.

Table 4. Chemical composition of the leach liquor.

Composition B Co Cr Cu Dy

Concentration (mg/L) 80 30 <1 <1 100

Composition Fe Mo Nd Ni Pr

Concentration (mg/L) <1 < 1 4580 <1 1300

Gibbs free energy change depending on reaction temperature was computed by HSC
software (Outotec, Espoo, Finland), as shown at Figure 6. The formation of RE-oxides after
evaporation of water in the furnace can be described as in the following equations:

2Nd(NO3)3 = Nd2O3 + 6NO2 + 1.5O2 (1)

2Dy(NO3)3 = Dy2O3 + 6NO2 + 1.5O2 (2)

2Pr(NO3)3 = Pr2O3 + 6NO2 + 1.5O2 (3)
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The Gibbs free energy for the temperature range of 0–1000 ◦C is exhibited in Figure 6.
As can be seen, the Gibbs free energy is negative after 500 ◦C. This allows for RE-oxide to
be formed by the thermal decomposition of leach liquor, which is energetically favored
after 500 ◦C.

Figure 7 shows the XRD results for the samples synthesized at 700 ◦C, 800 ◦C, 900 ◦C
and 1000 ◦C by ultrasonic spray pyrolysis method.

XRD analysis of powders obtained between 700 ◦C and 1000 ◦C confirmed the forma-
tion of a mixture of RE-oxides. The cubic structure of Nd2O3 with 20% of Pr2O3 was found
between 700 ◦C and 800 ◦C as shown at Figure 7. Checks of the XRD Pattern for crystal
structure leads to Nd1.6Pr0.4O3 solid solution. An increase in temperature from 800 ◦C to
900 ◦C and 1000 ◦C leads to a mixture of cubic and trigonal structure of Nd2O3 with 20% of
Pr2O3, as shown at Figure 7. An increase in temperature from 700 ◦C to 1000 ◦C increases
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the crystallinity of the obtained structure. Additionally, typical EDX-Analysis of powders
was shown at Figure 8, confirming the presence of rare earth elements.
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Figure 8. Typical EDS analyses of mixed REE-Oxide powders synthesized with varying reaction
temperatures.

The morphological investigation of mixed RE-oxide produced by USP processes at
different temperatures was conducted by SEM analysis. SEM analyses of the RE-oxide are
illustrated in Figure 9.

As indicated in Figure 9, spherical RE-oxide was obtained at various reaction temper-
atures by the USP Method. The image-processing technique is one of the computational
approaches widely getting implemented in various fields of material science. It is especially
useful for interpreting the images as the results of SEM. The morphology and size of the RE-
oxide nanoparticles were analyzed by SEM. Using SEM results, the morphological features
of the RE-oxide nanoparticles, such as their diameter, were picked up by image processing
and a particle search algorithm. The use of an image processing method algorithm is
detailed in [32].

Applied image processing methods generate the black and white images from the
original SEM images for determining the location and size of the RE-oxide nanoparticles.
Since the particles are known to have spherical shapes [33], the Hough transform method
was utilized for approximately defining the nanoparticles. The Hough transform draws
new circles at the three boundary points. Then, the center of the circle is computed, with
the junction point of new circles and diameter limits defined by the user. After the detecting
RE-oxide nanoparticles, these particles were labelled with blue rough circles and their
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cumulative distribution results related to process conditions were achieved. The results are
given in Figure 10.
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Graph of the labelled nanoparticles were drawn, with cumulative distribution repre-
sented by the y-axis, and nanoparticle size represented by the x-axis, as seen in Figure 10a–d.
The cumulative curve of RE-oxide nanoparticles whose sizes were calculated by an image-
processing technique is represented by the blue dashed line. The mean values of RE-oxide
nanoparticle size were calculated from SEM by the image-processing technique. These
SEM results reveal that the particles of RE-oxide synthesized from a 0.6 g/L solution
concentration at various reaction temperatures lay in the range of 200–700 nm. The mean
particle size of RE-oxide synthesized at 700 ◦C, 800 ◦C, 900 ◦C and 1000 ◦C was found to
be 362 nm, 417 nm, 468 nm and 540 nm, respectively.

The theoretical particle size of RE-oxides was calculated according to related equations.
The formation of RE-oxides will be firstly defined via the diameter of aerosol droplet (dd)
as shown with Equation (4) proposed by Peskin and Raco [24]:

dd = 0.34
(

8 πσ

ρL f 2

) 1
3

(4)

where: f —ultrasound frequency; ρL—density of water solution; σ—surface tension.
Using the following values: for water solution: f - 1.75 MHz; ρL- 1.02 g/cm3; σ-

0.07 J/m2, the calculated aerosol droplet amounts 2.86 µm.
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The particle size (dp) depends on the droplet size and the concentration of the solution
(C). This correlation between the concentration and other precursor characteristics and the
final particle size, under the assumption that no precursor is lost in the process, can be
described with the following Equation (5) derived via the Equation by Messing et al. [25]:

dp = dd

(
MREE−Nitrate
MREE−Oxide

∗ C
ρ

)0,33
(5)

where the dp is the diameter of the particle, the dd is the diameter of the aerosol droplet
calculated with Equation (4), Mp-molar mass of REE-nitrate (g/mol), the ρ is the density of
REE-Oxide (Nd-, Pr-, and Dy-oxide), C is the concentration of the precursor solution.

Using the following values for molar mass of rare earth elements – nitrate (REE-nitrate)
and rare earth elements- oxides (REE-oxides), densities of REE-oxides and concentrations
of metals in solution (as shown in Table 4), the calculated values for particles sizes of
REE-oxides using Equation (5) are presented in Table 5.

Table 5. Calculated theoretical particle size of RE-oxides using Equation (5).

REE-Nitrate Nd(NO3)3 Pr(NO3)3 Dy(NO3)3

Molar mass of REE-nitrate (g/mol) 282.2 326.0 348.5

REE-oxides Nd2O3 Pr2O3 Dy2O3

Density (g/cm3) 7.2 6.9 7.8

Molar mass (g/mol) 336.5 329.8 373.0

Concentration of metal in solution (g/L) 0.458 0.130 0.010

Theoretical minimal particle size (nm) 108 76 31

The calculated minimal particle size (nm) amounts: 108, 76, 31 for Nd2O3, Pr2O3
and Dy2O3, total 215. The obtained values of particle sizes are compared with experi-
mentally obtained values obtained by image process techniques. The differences between
calculated and experimentally obtained values may be partially due to the approximate
values used for surface tension and density of water solution, and mostly due to coales-
cence/agglomeration of aerosol droplets during transport to the furnace from an aerosol
generator. Moreover, Equation (5) was based on the assumption of one particle per one
droplet, and the influence of temperature on the mean particle size between 700 ◦C and
1000 ◦C was not taken into consideration.

4. Conclusions

Spherical particles of REE-oxides were produced from spent NdFeB magnets using
a combined process and consists of: nitric acid baking process at 200 ◦C, water leaching,
and ultrasonic spray pyrolysis between 700 ◦C and 1000 ◦C. Iron was removed from water
solution using a hydrolysis process. XRD analysis of the obtained particles found a cubic
and trigonal structure Nd2O3 with 20% Pr2O3, which is according to detected stoichiometry
in solution after dissolution of spent NdFeB magnets. An increase in temperature from
700 ◦C to 1000 ◦C increases not only the crystallinity of the structure, but also the particle
size between 362 and 540 nm. The minimal theoretical total particle size of prepared
REE-oxides amounts to 215 nm. The differences between calculated and experimentally
obtained values may be partially due to coalescence/agglomeration of aerosol droplets
during transport to the furnace from an aerosol generator. Generally, we developed one
combined environmentally friendly process for recovery of nanosized powder mixture of
Nd2O3 and Pr2O3 from spent magnets and re-use of nitric acid. The final winning of the
mixture of metallic Nd and Pr will be ensured using molten salt electrolysis [34].
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