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The brain activity during perception or cognition is mostly examined by functional magnetic resonance imaging (fMRI). However,
the cause of the detected activity relies on the anatomy. Diffusion tensor magnetic resonance imaging (DTMRI) as a noninvasive
modality providing in vivo anatomical information allows determining neural fiber connections which leads to brain mapping.
Still a complete map of fiber paths representing the human brain is missing in literature. One of the main drawbacks of reliable
fiber mapping is the correct detection of the orientation of multiple fibers within a single imaging voxel. In this study a method
based on linear data structures is proposed to define the fiber paths regarding their diffusivity. Another advantage of the proposed
method is that the analysis is applied on entire brain diffusion tensor data. The implementation results are promising, so that the
method will be developed as a rapid fiber tractography algorithm for the clinical use as future study.

1. Introduction

Functional magnetic resonance imaging (fMRI) serves to
determine the brain activity during perception or cognition.
BOLD contrast for fMRI is remarkable in cognitive neuro-
science, surgical treatment planning, and preclinical studies
in examining the main parameters such as the blood flow,
blood volume, resting state connectivity, and anatomical
connectivity within the brain [1]. To define the cause of
the detected activity, the anatomy of the underlying tissue
must be analyzed. The functional properties of the region
of interests (ROIs) in the brain can be investigated by
combination of different modalities such as diffusion tensor
magnetic resonance imaging (DTMRI or DTI), ADC fMRI,
and BOLD fMRI [2]. As a noninvasive imaging modality
DTMRI helps identification and visualization of the fiber
connections in the anatomy [3–5]. DTMRI is unique in its
ability providing in-vivo anatomical information noninva-
sively. The potential of DTI is to make the determination of
anatomical connectivity in the investigated brain regions by
mapping the axonal pathways in white matter noninvasively
[6].

The lack of a complete neural fiber map in literature
makes the postprocessing of the data very important.
Methods and updates are to be researched to define the fiber
trajectories in the uncertainty regions where multiple fiber
orientations cross within a single imaging voxel [7, 8]. Our
proposed technique aims to track the white matter fibers
according to data structure algorithm noniteratively and
depending on the structural information of the underlying
tissue. The proposed algorithm is based on two major
processes. One is decision making and the other one is
storing process. Decision making process is basically an
operation based on comparison between the orientations
of diffusivities of adjacent voxel pairs. In other words, it is
the determination of the path to be traced for computing
the neural pathways. The decision making involves setting
a similarity measure having a constant scalar value for a
subject. The voxels which succeeded to pass the threshold is
stored in a data structure. This process is performed for all
the adjacent voxel pairs in the examined brain MR images.
So the study applies the method to the entire human brain
DT images to construct maps of neural fibers in uncertainty
regions.
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Figure 1: Sample synthetic eigenvector pattern. (a) (1, 1) is the starting node, where green checks represent the neighbors within the
similarity measure.

2. Material and Methods

2.1. Principles of Diffusion Tensor Analysis. The Stejskal-
Tanner imaging sequence is used to measure diffusion
weighted images [3, 4, 9]. The diffusion tensor D is calculated
from this raw data source at each point in the tissue
formulated by the Stejskal-Tanner equation as [10, 11]

Si = S0e
−bĝTi Dĝi , (1)

where Si is the signal received with diffusion gradient pulses,
S0 is the RF signal received for a measurement without
diffusion gradient pulses, b is the diffusion weighting factor,
and |g| is the strength of the diffusion gradient pulses.

The diffusion tensor D is a real, symmetric second-order
tensor, represented in matrix form as a real, symmetric 3 ×
3 matrix [3, 4]. The six unique elements of the diffusion
tensor D are calculated according to the three-dimensional
Gaussian Stejskal-Tanner model as (2) by acquiring at least
six diffusion-weighted measurements in noncollinear mea-
surement directions g along with a nondiffusion-weighted
measurement S0 [3, 4, 7, 12, 13]. On regular DTMR scans
more than six diffusion-weighted measurements are taken
which creates an over constrained system of equations solved
using least square methods [9, 12, 14, 15]:
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Equation (2) equals a vector containing natural logarith-
mic scaled RF signal loss resulting from the Brownian motion
of spins, and xi, yi, zi denote the n gradient measurement
directions. An orthogonal basis is the eigensystem of the

symmetric matrix D by finding its eigenvalues and eigen-
vectors are calculated [16]. Principal component analysis
(PCA) is used to perform the diffusion tensor analysis and
compression. The diagonalization of the diffusion tensor
as (3) results in a set of three eigenvalues λ1 > λ2 >
λ3 representing the principal diffusion orientation in an
investigated pixel [5, 8]. The eigensystem is defined by the
eigenvectors ei and the corresponding eigenvalues λi (4). The
eigenvectors ei represent the principal diffusion directions:

Dx�ei = λi�ei (i = 1, 2, 3), (3)

|Dx − λI| = 0. (4)

Examining the raw data for every pixel, the eigensystem
of D is calculated in each pixel. The eigensystem calculation
for analyzed image data provides information about the
diffusion distribution throughout the investigated image
data. The first principal component λ1 shows the dominant
diffusivity direction. The second and third principal compo-
nents λ2 and λ3 provide information of the intermediate and
the smallest principal diffusivity, respectively [17].

2.2. List Data Structure Implementation. The linear data
structure used here helps to create a list of investigated
region of interest eigenvectors where data item insertions
and retrievals/deletions are made at one end, namely, the
top of the list. A data item insertion is called pushing and
removing is called popping the list. The created list can be
called a linked list in which all insertions and deletions are
performed at the list head (top) [18]. For each data item
push, the previous top data item and all lower data items
move farther down. When the time arrives to pop a data item
from the list, the top data item is retrieved and deleted from
the list. To clarify the implementation routine, application
steps are explained on the synthetic data as in Figure 1.

The starting point is selected as x = 1 and y = 1
as shown in Figure 1(a). This selected coordinate having
the eigenvector [1, 0] is the bottom of the linked list. The
predefined similarity measure is a set of angular thresholds
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Figure 2: Listed data structure analysis results shown on sample pattern with its principal eigenvectors. Two possible resulting fiber paths
are represented.

π/ j ( j = 4, 6, 12, 18, 20). Pixel (1, 2) is not within the limits
of similarity measure π/4 (see Figure 1(a)). Pixel (2, 1) is
stored in the stack on the top again in compliance with
similarity. Top is now assigned to the new node. Next, pixel
(2, 2) fulfilling the selected similarity measure is stored on the
top of the list. The eigenvector [0.7 .07] with its neighboring
pixels’ eigenvectors is being compared for similarity. As a
result, neighbors with coordinates (1, 3) and (3, 3) with
both having the eigenvector [−0.7 −0.7] are eliminated
(see Figure 1(b)). The implementation follows by pushing
the coordinates (2, 3) and (3, 2) to the list. Pixel (3, 2) is
popped. Then its neighbors are examined as in Figure 2(a).
The routine follows by determining pixels matching with
the predefined similarity rule π/4. The synthetic fiber path
(represented in blue) is defined as a result as in Figure 2(b).

Selecting the similarity measure as π/4 allows the pixel
(2, 2) to be on the list as described above. But examining
the pattern by a different try for a varying angular threshold
such as π/6 or π/12, this pixel is not being assigned for the
neighboring pixel list. As a result the track represented in red
on Figure 2(b) is the outcome of the computational routine.
The decision making here about to select a track follows
regarding to the underlying tissue’s structural information.

The proposed approach relies on the assumption of the
unique path description of an axon. Each element in the
implementation represents a voxel in the ROI, and each
voxel is related with its neighboring voxels. Regarding the
neighboring voxel knowledge, the computation sorts the
elements in the list for tracking, where the elements which do
not fulfill the criteria are kept in a secondary matrix. While
examining the investigated pattern pixelwise, the elements
in the secondary matrix come up as potential neighboring
pixels in question. The repeated check for if they are within
the similarity criteria and if they belong to the fiber track
gives the chance of a double check in the system. By that way,
the neighboring is updated and a more secure resulting track
is being defined and followed. The routine updates itself so
that for the one selected starting node the first and second
neighboring pixels are investigated and the computational
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Figure 3: Calculated principal eigenvectors of the entire slice super-
imposed on axial brain MR image.

routine is stretched to a wide range via this increased
neighborhood.

3. Results

The proposed method is implemented on simulated fiber
eigensystem to determine the predefined synthetic trajec-
tories in Section 2.2. The output of the algorithm is in
agreement with the visual inspection results as shown
in Figure 2. Variation of the similarity measure causes
major differences in the calculated neural path as seen in
Figure 2(b). Small values of the similarity measure decreases
the number of voxels in the solution which are defined by



4 Computational Intelligence and Neuroscience

20

40

60

80

100

120

20 40 60 80 100 120

Please select an initial pixel

(a)

20

40

60

80

100

120

20 40 60 80 100 120

Tracking result (red) on the principle
vector (blue) representation

(b)

58

60

62

64

66

68

70

72

74

76

78

35

(c)

40 45 50 55 60

Tracking result (red) representation

Figure 4: Fiber tracking results traced on axial slice with a similarity measure of π/20. (a) Starting point at [44, 70]. (b) Calculated
neighboring pixels with related diffusivity mapped on entire eigenvector map. (c) Zoomed region of interest.

the decision making as neighboring voxels while increased
similarity measure selections generate more well-defined and
close results to the underlying tissue structure.

Following the promising results of the synthetic data
implementations, the method is applied on real DT brain
images. As explained in detail in Section 2.1 ((3) and (4)), the
eigensystem of D is determined by PCA [19] and interpreted
graphically as seen in Figure 3.

It is obvious that visual detection of any fiber path on the
2D axial MR image representing the eigenvectors is pretty
hard unlike the simulated case. Therefore the developed
linear list data structure algorithm is applied to the entire
brain for neural fiber mapping. The search process of the
pattern in the selected limits is completed in examining the
eigenvectors of each pixel based on the predefined similarity
measure. This examined data set sample might be a whole
image data or a single ROI as in Figure 4.

The selection of the investigated brain region’s size is
directly related with the elapsed time of the computation. To
be able to visualize the results of the algorithm, not the whole
brain volume but only a selected and easily recognized region
is computed. The results of such an example are represented
in Figures 5 and 6 from different view angles in 3D.

4. Discussion

Some modalities such as PET and fMRI makes it possible
to map the brain functions noninvasively. A parallel fMRI
experiment with DTI is promising for understanding the
brain function in both neuroimaging and neuroanatomical
techniques’ sense [2]. The knowledge derived from the
DTI make it possible to map the in vivo information of
the human neural fiber pathways noninvasively. This is an
important motivation in diffusion tensor analysis research.
The postprocessing of DTI analyzing tools plays great role
in determination of the anatomical structural maps of fiber
tracts. To follow a fiber tract and to build a neural map, each
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Figure 5: Tracking results of the implementation are represented
on 2 consecutive slices.
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Figure 6: Fiber tracking results of the ROI close to inferior frontal
lobe registered with the anatomic MR images.

voxel’s trajectory is approximated by a set of computed lines
in each voxel regarding their major diffusivity. Each resulting
tract defines a curvature representing a small bundle of axons
in the pathway.
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In the existence of fiber crossings and branches in an
investigated ROI, the accuracy of the computed neural paths
by DTI analyzing tools is unclear. One of the main limitations
of diffusion tensor analysis relies on providing a solution
for identification of the orientations of the brain fibers in
uncertainty regions which is of great importance [3, 4, 8].
Therefore this problem arising in these so-called uncertainty
regions is tried to be eliminated by different research groups
[12, 20–23].

The aim of this study is to propose a rapid and reliable
tracking algorithm which may eliminate the uncertainty
region problem in DTI analysis. As seen in results, the
synthetic fiber tracking implementation succeeded for pre-
defined neural pathways. This motivated us to implement
the algorithm on real diffusion tensor brain images. The
computed tracts are found in agreement with the spatial
visual inspection. Detailed anatomic information can be
gathered via the computed tractography based on the
Talairach atlas to become a gold standard, which is still
missing.

Future work relies on eliminating the tracking problems
in the uncertainty areas by upgrading the proposed method
so that the calculation will be implemented on neural system
basis and physiological background. The results will provide
the base to reliable brain mapping.

5. Conclusion

This work aims to develop a promising approach which may
eliminate the uncertainties in DT-MRI fiber tractography
reconstructions and enhance a neural mapping. The degree
of uncertainty in fiber orientation is subject to change
by the selection made for similarity measure to detect
neighboring voxel pairs. The fiber tracking tools are limited
to trajectory-based representations. Therefore the detection
of the anatomical connectivity and reliable computation of
the neural map should be applied carefully being aware of
any mistaken result.

It has been shown that linear list data structure gives
promising analysis results in diffusion tensor fiber tract esti-
mation. The identifying similarity measure varies in a range
which is accepted in the means of anatomical fiber structure
knowledge. Comparing the resulting tracts in synthetic
eigenvector pattern with the known predefined pathways,
the algorithm gives promising results and works well for the
tracking purposes. The computed neural pathways varying
with the change of the similarity measure cause to decrease
or increase the number of the neighboring voxels for a
selected starting voxel. The differing resulting pathways can
be thought as an error of the method where it might be also
in some cases the possible orientation of a fiber bundle in
a wide range, which may be determined by an anatomical
brain atlas, that is, Talairach atlas.

Besides the existing algorithms the proposed technique
provides the possibility to compute the whole eigensystem
of the investigated brain volume. The neighboring voxel pair
calculation compares the investigated node in every step of
the algorithm within the entire image volume. Each voxel
is checked for more than one trial in the total analysis. In

that way the decision making of the algorithm becomes more
precise.
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