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ARTICLE INFO ABSTRACT

Keywords: In this work, a novel electrochemical molecularly imprinted polymer (MIP) sensor for the detection of the
Molecularly imprinted polymer lipopeptide antibiotic Daptomycin (DAP) is presented which integrates gold decorated platinum nanoparticles
Daptomycin (Au-Pt NPs) into the nanocomposite film. The sensor was prepared by electropolymerization of o-phenylene-

Platinum nanoparticles
gold nanoparticles
modified electrodes

diamine (0-PD) in the presence of DAP using cyclic voltammetry. Cyclic voltammetry and differential pulse
voltammetry were applied to follow the changes in the MIP-layer related to rebinding and removal of the target
DAP by using the redox marker [Fe(CN)6]®~7%". Under optimized operational conditions, the MIP/Au-Pt NPs/
GCE nanosensor exhibits a linear response in the range of 1-20 pM towards DAP. The limit of detection and limit
of quantification were determined to be 0.161pM =+ 0.012 and 0.489pM =+ 0.012, respectively. The sensitivity
towards the antibiotics Vancomycin and Erythromycin and the amino acids glycine and tryptophan was below 7
percent as compared with DAP. Moreover, the nanosensor was also successfully used for the detection of DAP in

deproteinated human serum samples.

1. Introduction

The cyclic lipopeptide DAP was the first approved drug of a new
class of antimicrobials [1-3]. DAP presents a broad spectrum of activ-
ities against a wide range of gram-positive bacteria. It is composed of a
peptide moiety containing 3 D- and 10 L- amino acids [4,5]. It binds to
calcium and enters the cytoplasmic cell membrane of gram-positive
bacteria, rapidly depolarizing the cell membrane. Depolarization causes
inhibition of DNA, RNA and protein synthesis [6,7]. For appropriate
application of antibiotics, accurate clinical diagnosis, selection of the
most appropriate drug, its dosage and amount are very important [8].
Therefore, its determination in bulk and biological samples has gained
great attention. In literature there exist mainly chromatographic
methods for the determination of DAP such as HPLC [9-11], LC-MS
[12-14] UPLC-PDA [15]. Voltammetric determination of DAP ex-
ploiting the electrochemical oxidation of DAP on glassy carbon elec-
trode has been conducted by Brett’s group [16] and there is no work in
the literature on sensors based on molecularly imprinted polymers for
DAP. MIP is biomimetic recognition elements which contain selective
recognition sites for a target molecule, the so-called template, in a
polymer matrix: They are prepared by polymerizing functional mono-
mers with or without cross-linkers in the presence of the template
molecule, which is subsequently removed [17-20]. This process leads
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to the formation of cavities in the polymer, which are to some extent
complementary in size, shape and functionality to the template
[17,18,21]. Therefore, it is preferentially rebound even from complex
mixtures [17,22-28]. Due to their high selectivity along with their cost-
effectiveness, high stability, and versatility MIP-based sensors have
been successfully developed for drugs [29-42].

Metal nanoparticles have been used in electrochemical nanosensor
to increase the surface-to-volume ratio of the recognition layer. Among
different nanomaterials, gold nanoparticles (AuNPs) are most fre-
quently used in fabrication of nanosensor. They can easily be im-
mobilized on the surface of electrodes and have high adsorption ability
to facilitate the electron transfer [43-45]. Platinum nanoparticles
(PtNPs) are promising candidates in nanosensor design showing re-
markable catalytic activity, high corrosion resistance [46,47].

In this work, we combine for the first time MIPs with Au-Pt NPs to
design an electrochemical molecularly imprinted polymer based na-
nosensor for the detection of the lipopeptide antibiotic Daptomycin.
The MIP was prepared on the Au-Pt NPs modified GCE by the electro-
polymerization of o-PD in the presence of DAP. Subsequent removal of
the template led to the formation of selective binding cavities for the
rebinding of DAP in the pM concentration range. Moreover, DAP de-
tection using the MIP/Au-Pt NPs/GCE nanosensor in deproteinated
human serum sample was tested.
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Fig. 1. Cyclic voltammograms during electropolymerization of o-PD on Au-Pt
NPs/GCE.

2. Experimental
2.1. Reagents

0-PD, PtNPs dispersion (3 nm in H,0), were purchased from Sigma-
Aldrich. AuNPs were from Nanocos, Canada, with a size of 10 nm and a
concentration of 0.01% AuNPs in water solution. DAP (lot 010903A)
was supplied from Cubist, Inc., Lexington, MA. Potassium hex-
acyanoferrate (II) and hexacyanoferrate (II[) were obtained from
Merck. All reagents were of analytical grade, used without further
purification, and double distilled water from a Millipore Milli-Q system
was used in all sample preparations. A stock solution of human serum
(human male AB plasma) was purchased from Sigma-Aldrich (St. Louis,
MO, USA).

-0.2 0.0 0.2 0.4 0.6 0.8
Potential/ V

Fig. 2. Cyclic voltammograms of a)MIP/Au-Pt NPs/GCE after MIP synthesis b)
after removal of DAP c) after rebinding of 1 pM DAP, 5mM [Fe(CN)e]®~/*
mixture solution in 100 mM KCI scanning between —0.2 and 0.8V at a scan
rate of 50 mV/s.

2.2. Instruments

PalmSens potentiostat (Utrecht, The Netherlands) was used for
cyclic voltammetry and differential pulse voltammetry (DPV), with a
three electrode system including glassy carbon electrode (GCE) with a
diameter of 3 mm as working electrode, an Ag/AgCl (BAS; 3M KCI)
electrode as the reference electrode, and a platinum wire as the counter
electrode. pH measurements were carried out by a pH meter Model 538
(WTW, Austria) with a combined glass electrode. The modified elec-
trodes were characterized by SEM and energy dispersive X-ray (EDX)
analysis using ZEISS EVO 40 (Merlin, Carl Zeiss).

2.3. Preparation of solutions

The nanocomposite solution was obtained by ultrasonication and
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Fig. 3. Effect of modification of MIP nanosensors on the DPV of the 5mM [Fe
(CN)6]3_/ 4 redox marker after DAP removal a) bare MIP/GCE b) MIP/AuNP/
GCE, ¢) MIP/PtNP/GCE, d) MIP/Au-Pt NPs/GCE.

mixing the dispersions of AuNPs and PtNPs in a ratio of 2 to 1. 100 mM
acetate buffer (pH 5.2) was prepared by mixing 2.90 mL acetic acid and
3.281 gr sodium acetate. Stock solution of 0-PD (10 mM) was prepared
in 5mL acetate buffer (100 mM, pH 5.2) by weighing 9.0 mg o0-PD. In
order to prepare 5mM [Fe(CN)¢1® ™7 solution, 0.745 gr KCI(0.1 M)
was dissolved in ultradistilled water and 82.3 mg K3[Fe(CN)g] and
105.6 mg K,[Fe(CN)¢].3H,0 was added to 0.1 M KCl solution to obtain
5mM [Fe(CN)g]® ™74

2.4. Preparation of MIP/Au-Pt NPs/GCE Nanosensor

Prior to the modifications, the surface of electrode is ultrasonicated
in water and ethanol. Then, the surface of the GCE was cleaned with
alumina slurry (size of alumina: 1.0 micron) on a polishing pad, rinsed
with distilled water and dried in air. After that, nanosensors were
prepared by dropping 5puL of the mixture PtNP-AuNP (2:1) on the
surface of the GCE. After drying at ambient room temperature, Au-Pt
NPs modified GCEs (Au-Pt NPs/GCE) were used to prepare MIP- and
NIP-electrodes (non-imprinted polymer). For preparation of MIP and
NIP, 5mM o-PD solution was prepared in acetate buffer pH 5.2
[48-50]. For NIP based nanosensors, 5mM o-PD was electro-
polymerized on the Au-Pt NPs/GCE by cyclic voltammetry between O
and 0.8 V with 10 scans at a scan rate of 50 mV/s. DAP-imprinted Au-Pt
NPs/GCE were prepared in the same way, but in the presence of 0.5 mM
DAP. Template molecules were removed by rotating the electrode in
0.1 M NaOH at room temperature for 3 h at 300 rpm. Rebinding of DAP
and its removal were followed by CV in 5mM [Fe(CN)e]1®~"*solution
(in 100 mM KCl) by sweeping between -0.2 and 0.8 V (three scans) at a
scan rate of 50 mV/s. The workflow of the electrosynthesis of MIPs and
NIPs, template removal and readout is presented in Scheme 1.

2.5. Preparation of biological samples

The developed MIP/Au-Pt Nps/GCE sensor was also applied to de-
tect DAP in spiked deproteinated serum samples. For this purpose,
standard solutions of human serum derived from human male AB
plasma were prepared. By mixing 5.4 mL of acetonitrile, 3.6 mL of the
synthetic serum sample and 1.0 mL of 10 nM DAP-solution, the stock
solution containing 1 nM DAP was prepared. The purpose of acetoni-
trile addition was to precipitate the protein residues in the sample.
Blank serum is prepared with 5.4 mL of acetonitrile, 3.6 mL of synthetic
serum sample and 1.0 mL of 100 mM acetate buffer(pH 5.2). The so-
lutions were centrifuged for 25 min at 3000 rpm and the supernatants
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were then collected before the experiments. For the electrochemical
analysis, aliquot from the stock solution of serum were used for re-
binding of DAP.

3. Results and Discussion
3.1. Design of MIP/Au-Pt NPs/GCE nanosensor

For the preparation of MIP nanosensor, electropolymerization of o-
PD was performed using cyclic voltammetry as shown in Fig. 1. As
control, NIPs were also prepared without DAP. Cyclic voltammograms
of the redox marker [Fe(CN)¢]> ™74 for all steps of MIP synthesis and
rebinding are demonstrated in Fig. 2.

It can be seen from Fig. 2a that after MIP preparation on the surface
of the Au-Pt NPs/GCE the permeation of the redox marker is partially
suppressed by the DAP-containing poly-o-PD film. Removal of DAP
from the Au-Pt NPs/GCE - o-PD film by the treatment in NaOH gen-
erates cavities which allow the redox marker to reach the electrode
surface (Fig. 2b). The following rebinding of DAP decreased the [Fe
(CN)e13 7% response in a concentration dependent manner (Fig. 2c).

The influence of the NPs on the performance of the MIP was in-
vestigated by DPV. Different nanomaterials such as AgNPs, PtNPs and
AuNPs were used to modify the surface of GCE prior the electro-
polymerization in order to increase the MIP performance. After removal
of DAP for 3h, the peak current of 5mM [Fe(CN)¢]>~’* was ap-
proximately 27 times higher at the MIP/ Au-Pt NPs /GCE as compared
to the bare MIP/GCE which indicates the effect of the increased active
surface area by the NPs (Fig. 3, Table SI. 1). This modification was used
in the further experiments.

3.2. Characterization of the MIP/Au-Pt NPs/GCE nanosensor by scanning
electron microscopy and energy dispersive X-ray analysis

Scanning electron microscopy and energy dispersive X-ray analysis
techniques were used to characterize and follow the modification of the
GCE. SEM images of the MIP/ Au-Pt NPs /GCE before and after removal
and after rebinding are presented in Fig. 4A-C. Moreover, the changes
in the amount of C, N, O from EDX results indicates the removal (Fig.
SI.1) and rebinding of the DAP from the surface of MIP/ Au-Pt NPs/GCE
nanosensor and indicates the presence of PtNPs and AuNPs (Fig. 4D).

3.3. Analytical performance of the MIP sensor

In order to optimize removal time, MIP/ Au-Pt NPs /GCE and NIP/
Au-Pt NPs /GCE were kept in 0.1 M NaOH solutions for different re-
moval times. 3 h of template removal with rotation at 300 rpm, in 0.1 M
NaOH, was optimal. After the template removal the MIP electrode was
incubated in 0.5M acetate buffer (pH 5.2) for rebinding of DAP for
different incubation times and 5 min rebinding was found as optimum
and used for all studies.

When the MIP/Au-Pt NPs/GCE modified MIP electrode was in-
cubated in solutions containing different concentrations of DAP, the
cavities in the film were occupied by DAP, which led to the con-
centration dependent decrease of the peak current signal produced by
the redox marker. Al =1, — I, equation was used where, I, is the
currents after template removal and Ic after rebinding of DAP at related
concentration in pM, respectively.

Under optimized operational conditions, the decrease of the DPV
peak current of the MIP/Au-Pt NPs/GCE nanosensor depended on the
DAP concentration from 1 to 20 pM DAP (Fig. 5A). The regression
equation for DAP is Al (uA) = 0.228 (uA.pM_l)c + 0.355 (UA, n = 3)
and the regression coefficient (R) is 0.996.

The electrochemical sensitivity from dividing the slope of the con-
centration dependency (Fig. 5B) by the geometric surface area of the
electrode was found as 3.257 pA/pM cm?.

On the other hand, incubation of the NIP-sensor in DAP-containing
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Fig. 4. SEM images of MIP a) before and b) after template removal c) after rebinding d) EDX results of MIP after rebinding. (All images were taken at a magnification

level of 50,000 x).

solution had only a very small effect on the peak current of the redox
marker. At 20 pM the MIP electrode showed a 5.81-fold higher signal as
compared with the NIP i.e. the imprinting factor is 5.81.

Limit of quantification and limit of detection values were de-
termined as 0.489 pM *+ 0.012 and 0.161 pM * 0.012, according to
3.3ss/m and 10ss/m equations, respectively [51]. The dependence of
the DPV responses on the concentration of Daptomycin for NIP/Au-Pt

NPs/GCE is presented in Fig. 5B.

Furthermore, rebinding studies were performed using different
concentrations of DAP in deproteinated human serum samples. In
human serum sample studies, differential pulse voltammograms of DAP
were recorded in 5 mM [Fe(CN)g]® ™/ mixture in 0.1 M KCL. In order
to characterize the effect of serum, control experiments were performed
using DAP-free human serum sample as a blank. The current after
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template removal decreased on addition of human serum from 4.46 pA
to 4.02 pA and this value was used as the blank. With increasing con-
centration of DAP, the difference to the blank increased in the range of
1-50 pM (Fig. 6). The regression equation for the concentration de-
pendence is Al (uA) = 0.069(uA.pM ™~ Y)c+ 0.227 (uA, n = 3) and the
regression coefficient (R) is 0.999.

The detection limit of DAP was 0.310 pM = 0.007 and LOQ value of
0.940 pM =* 0.007. The parameters of the calibrations plots are sum-
marized in Table SI. 2. The LOD of the designed nanosensor indicates
that our proposed method could potentially be employed to monitor
DAP concentration with high sensitivity. In the current work MIP/Au-Pt
Nps/GCE shows a wide linear concentration range and lower LOD than
reported values for DAP drug at different modified electrodes as pre-
sented in Table 1.

The MIP-sensor has been tested in a medium, which is typically used
in HPLC analyses of biological samples. The reason for the required
“sample pretreatment” is the presence of of highly abundant proteins in
the millimolar concentration region whilst protein biomarker or drugs
are in the nanomolar range. Since MIP-sensors represent only one “se-
paration plate”, it is challenging to reach the required selectivity in non-
pretreated biological samples. Therefore, testing of MIP-sensors in semi-
synthetic serum or artificial urine is generally reported in literature
[52].

3.4. Selectivity studies

The selectivity of the MIP/ Au-Pt NPs /GCE nanosensor, which is the
most important validation parameter, was characterized by comparing
the binding of 10 pM DAP, Vancomycin and Erythromycin which are
DAP-like structured antibiotics, and the amino acids glycine and tryp-
tophan, which are found in DAP structure (Fig. SI.2). The sensitivity
towards the antibiotics Vancomycin and Erythromycin and the amino
acids glycine and tryptophan was below 7 percent as compared with
DAP (Fig. 7).

4. CONCLUSION

In this work, the first MIP based nanosensors were developed for the
sensitive electrochemical detection of Daptomycin. DPV and CV tech-
niques of the redox marker ferrocyanide/ferricyanide were used to
monitor all steps of MIP-synthesis and subsequent target binding.
Integration of gold decorated platinum nanoparticles into the DAP-
imprinted poly o-PD layer (MIP/Au-Pt NP/GCE) resulted in a 26 fold
increase of the current signal after template removal. Under optimized
operational conditions, the MIP/Au-Pt NP/GCE sensor exhibits a linear
response between 1 pM and 20 pM DAP with LOQ and LOD values of
0.489 = 0.012pM and 0.161 * 0.012pM, respectively. The MIP
electrode has an almost 5.81 fold higher sensitivity towards DAP as
compared with the NIP and structurally related antibiotics or amino
acids gave below 7 percent smaller signals than the target DAP. It was
also successfully used for the detection of DAP in deproteinated diluted
human serum samples.
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Table 1

Comparison studies of various published electrochemical sensors for DAP with the present work
Electrode/ Column Technique Linearity range LOD Reference
GCE DPV 0.5-7.5 uM 0.32 uM [16]
MIP/Au-Pt Nps/GCE DPV 1.62 x 10°-3.24 x 10® mg mL? 2.61 x 107'° mg mL! This Work
C18, 250 X 4.6 mm, 5 ym HPLC-UV 5—-100 mgL'1 1.65 ugmL'l [14]
Zorbax Eclipse HPLC-UV 3.5 -350 pugmL’ 0.5 pgmL* [9]

XDB-C8 column

X Terra RP-18 RP-LC 0.5-12 pgmL* 0.1176 pg mL* [10]
Agilent Zorbax C18 analytical column (4.6 X 150 mm, 5 pm) HPLC 20-70 |,1gmL'1 1.87 ug mL?! [11]
Acquity UPLC TM HSS T3, 1.8 ym, 2.1 X 150 mm UPLC-PDA 0.781- 200 pg mL™* 0.195 ug mL? [15]
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Appendix A. Supplementary data

Supplementary material related to this article can be found, in the

online version, at doi:https://doi.org/10.1016/j.snb.2020.128285.
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