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Abstract
Thus far in the available literature, capability-based distributed layout (CBDL) design approaches were only developed

under certain environments. Indeed, uncertainties embedded in the machine unavailability (or random machine break-

downs), product demands, and process flow data were not considered by the previous studies to achieve a robust CBDL

design. However, many real-life facility layout design applications may involve different types of uncertainties simulta-

neously, like fuzziness and stochasticity. Based on this motivation, for the first time in the literature, this paper introduces a

novel robust capability-based distributed layout (R-CBDL) design problem under a mixed fuzzy-stochastic environment.

First, a new fuzzy-stochastic optimization model of the R-CBDL design problem is developed by considering the random

machine breakdowns and fuzzy demand/process flow data. Then, a hybrid solution approach based on a chance-constrained

stochastic programming technique with a well-known interactive fuzzy resolution method is proposed. Thus, the random

machine breakdowns and fuzzy part flow rates among different machining capabilities could be easily handled via the

proposed approach. Fortunately, the proposed approach can also generate various risky and risk-free robust layout design

alternatives under different probabilistic scenarios and uncertainty levels (a-cuts) according to the facility designer’s risk

attitude. To show the validity and applicability of the proposed R-CBDL problem and hybrid solution approach, an

extensive computational study with comparative analysis is first presented based on an illustrative numerical example

under different machine capability overlap cases and probability distributions. Then, the performance of the proposed

approach is also tested on a real-life cellular manufacturing system of a company. The computational experiments have

shown that the proposed approach can accomplish more efficient robust layout design alternatives with on average 24.5%

better total expected layout score when compared to the existing cellular layout of the manufacturing company.

Keywords Robust capability-based distributed layout problem � Chance-constrained stochastic program � Fuzzy
mathematical programming � Random machine availability � Fuzzy part flows

1 Introduction

Although the facility layout design (FLD) concept is a

highly studied research topic, many studies on its different

variants have still been conducted in the recent literature

(Guo et al. 2022; Baykasoğlu et al. 2022; Yang and Lu

2023; Subulan et al. 2023; Pérez-Gosende et al. 2023; Zolfi

et al. 2023). The CBDL design approach that was first

proposed by Baykasoğlu (2003) and then also extended in

recent studies (Baykasoğlu and Subulan 2020; Baykasoğlu

et al. 2022; Subulan et al. 2023) is one of its variants which

aim to distribute machines’ processing capabilities prop-

erly over the facility floor to adapt dynamically changing

manufacturing environments. In the original approach of

Baykasoğlu (2003), machines’ processing capabilities

which are defined in terms of Resource Elements (REs)

were considered as the basic capability units and optimal

distribution of these REs was targeted to provide
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distributed layouts. When compared to the classical

machine-based distributed layout design approaches

(where the optimal distribution of machines is considered

only), the capability-based distribution was proven to be a

more effective option as it can also reveal the hidden

flexibility in the manufacturing systems (Baykasoğlu and

Göçken 2010; Baykasoğlu and Subulan 2020; Baykasoğlu

et al. 2022). Since some processing capabilities can be

covered by alternative machines, the capability-based

definition for the processing requirements of the manu-

factured parts may offer more flexibility than a machine-

based route definition where a part processing requirement

is generally assigned to a single machine. Furthermore, in

many real-world manufacturing environments, parts’ pro-

cessing requirements (or manufacturing routes) are com-

monly described in terms of the production operations (or

machine’s processing capabilities/REs) they need. Based

on these facts, several subsequent papers have been also

conducted on the CBDL design approach (Hamedi et al.

2012a,b; Hamedi and Esmaeilian 2015; Shafigh et al.

2015, 2017; Baykasoğlu and Subulan 2020; Baykasoğlu

et al. 2022; Subulan et al. 2023). Actually, the original

approach of Baykasoğlu (2003) was first extended to a

biased CBDL design approach by Baykasoğlu and Subulan

(2020) by considering demand data and process flow

information, because some dominant part flow patterns

may arise among different machining capabilities in real-

world settings and this may also affect the optimal capa-

bility distribution over the facility floor. It was also high-

lighted by Benjaafar and Sheikhzadeh (2000) and

Benjaafar et al. (2002) that if available, process flow

information and demand data may lead to better-quality

distributed layouts. Therefore, dominant part flow patterns

among different machining capabilities could be taken into

account with the help of the biased CBDL approach of

Baykasoğlu and Subulan (2020). The latest variant of

capability-based FLD approaches which is named as

unequal-area capability-based facility layout design (UA-

CBFLD) was recently introduced by Subulan et al. (2023).

However, all of these previous studies on the capability-

based FLD approaches (Baykasoglu 2003; Baykasoğlu and

Göçken 2010; Baykasoğlu and Subulan 2020; Baykasoğlu

et al. 2022; Subulan et al. 2023) were only proposed under

certain environments. In other words, uncertainties

embedded in the product demand, process flow data, and

machine unavailability risks (or breakdowns) were not

considered by these former studies to generate a robust

capability-based FLD.

It should also be highlighted here that although several

variants of the robust FLD approaches are available in the

literature (Rosenblatt and Lee 1987; Aiello and Enea 2001;

Pillai et al. 2011; Moslemipour et al. 2012, 2017; Drira

et al. 2013; Nematian 2014; Neghabi et al. 2014; Izadinia

et al. 2014; Fazlelahi et al. 2016; Zha et al. 2017, 2020;

Morinaga et al. 2017, 2019; Peng et al. 2018; Targhi et al.

2019; Xiao et al. 2019; Vitayasak et al. 2019; Hunagund

et al. 2020; Khajemahalle et al. 2021; Esmikhani et al.

2022), there is still a lack of studies on the robust dis-

tributed layout design approaches (both on machine-based

and/or capability-based ones) under uncertain environ-

ments. In other words, robust distributed layout approaches

were rarely discussed in the existing literature (Celik et al.

2016; Pourvaziri et al. 2022). Moreover, even though many

studies are also available on different variants of the FLD

problems with uncertain demand and/or process flow data,

the number of studies focusing on the FLD problems with

random machine breakdowns (or unavailability risks) is

very limited in the existing literature (Vitayasak and

Pongcharoen 2016; Vitayasak et al. 2019). In other words,

the majority of robust FLD approaches (Vitayasak et al.

2017; Zha et al. 2020; Khajemahalle et al. 2021; Gölcük

et al. 2022; Pourvaziri et al. 2022) have concentrated on the

uncertainty of product demands, process flows, or close-

ness ratings only. However, there are still a few studies on

the FLD approaches with stochastic machine unavailability

or breakdowns. On the other hand, random machine

breakdowns that correspond to machine unavailability risks

may have a considerable effect on the layout design

objectives (Vitayasak and Pongcharoen 2016; Vitayasak

et al. 2019). It should also be noted here that none of these

aforementioned studies on the robust FLD problems took

into account the machines’ processing capabilities to pro-

duce a robust capability-based layout design. In other

words, the machines’ processing capabilities and their

optimal distribution over the facility floor were not con-

sidered by the previous studies on robust FLD problems.

Furthermore, many real-world problems may contain dif-

ferent types of uncertainties such as fuzziness and ran-

domness (or stochasticity) together (Baykasoğlu and

Subulan 2019; Subulan 2020; Subulan and Çakır, 2022).
Therefore, different types of uncertain parameters may also

arise in real-world facility layout design applications.

However, only one type of uncertainty, i.e., either fuzziness

or stochasticity was considered by the majority of the

previous studies (Kulturel-Konak 2007; Nematian 2014;

Moslemipour et al. 2018; Pagone et al. 2023) while han-

dling the non-deterministic facility layout parameters.

However, these different uncertainty categories (i.e.,

fuzziness, randomness, and hybrid or fuzzy random) should

be addressed together for better reflection of real-life set-

tings (Liu 2007).
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Based on these motivations, the main contributions of

this study are presented as follows:

(i) This paper introduces a novel robust capability-

based distributed layout (R-CBDL) design prob-

lem under a mixed fuzzy-stochastic environment.

(ii) Unlike the previous studies on machine-based

robust distributed layout design approaches (Celik

et al. 2016; Pourvaziri et al. 2022), we introduced

an R-CBDL design approach for the first time in

the literature. To the best of our knowledge, there

is no similar study in the literature on such an

R-CBDL approach that can consider random

machine breakdowns and fuzzy demand/process

flow information simultaneously.

(iii) In addition to the uncertainties in the demand

quantities and process flow data of several parts,

we also took into account the random machine

breakdowns (or machine unavailability risks) to

provide a more effective robust CBDL. Because

the random machine breakdowns may affect the

accessibility of the machines’ processing capabil-

ities considerably and may also have an influence

on the part flows among different machines.

Indeed, flow patterns between different machining

capabilities, which can be obtained from the

processing routes of several parts, may not gen-

erally be determined precisely in many real-world

applications due to fuzzy demand quantities and

process flow data. For these reasons, as in the

studies of Vitayasak and Pongcharoen (2016) and

Vitayasak et al. (2019), the proposed R-CBDL

approach aims to assign alternative machines,

which is not broken down and also have the same

processing or machining capabilities. As men-

tioned previously, none of these former studies on

robust FLD problems considered the optimal

distribution of machines’ processing capabilities.

Fortunately, we took into account these processing

capabilities which can also provide additional

flexibility in case of machine breakdowns. In other

words, alternative machines that are not broken

down and have the same processing capabilities

can be used instead of broken or inactive ones.

However, it should also be emphasized here that it

is not always possible to find a feasible FLD under

some probabilistic scenarios where some critical

machines are broken down. In this case, critical

machines which necessitate preventive mainte-

nance actions can also be easily specified by using

the unsatisfied scenarios in the proposed hybrid

solution approach (which is based on chance-

constrained stochastic programming and fuzzy

interactive resolution techniques). To the best of

our knowledge, there is no similar study on the

robust FLD approaches which can specify the

critical machines (with the most essential process-

ing capabilities) that require a preventive mainte-

nance plan.

(iv) For better reflection of the real-life applications

which generally contain different types of uncer-

tainties simultaneously, we first formulated a new

fuzzy-stochastic optimization model of the pro-

posed R-CBDL design problem based on the

original deterministic MILP model of Baykasoğlu

and Subulan (2020). Then, a hybrid solution

approach is proposed based on a chance-con-

strained stochastic program and a well-known

interactive fuzzy resolution method. In addition to

coping with different types of uncertainties con-

currently, the proposed hybrid solution approach is

also able to specify the critical machines with the

most vital processing capabilities by using the

unsatisfied scenarios in the chance constraint sets.

Thus, facility designers can be aware of these

critical machines and aim to increase their relia-

bility rates (or decrease their breakdown probabil-

ities) to maintain the continuous production of the

facilities. Furthermore, the proposed solution

approach can also generate various layout design

alternatives under different probabilistic scenarios

and uncertainty levels (a-cuts or feasibility

degrees of fuzzy constraints) concerning the

facility designer’s risk attitude (i.e., risk-averse

or seeker). Therefore, more reliable and efficient

robust distributed layout design alternatives can be

generated via the proposed approach. To the best

of our knowledge, there is no similar study in the

literature, which can produce various robust layout

design alternatives under different scenarios and

uncertainty levels according to the facility

designer’s attitude toward risk.

The remainder part of this paper is organized as follows:

A brief literature review on robust FLD problems under

uncertainty is presented in Sect. 2. The description and

mathematical formulation of the R-CBDL design problem

are given in Sect. 3. In Sect. 4, the fundamentals of the

proposed hybrid approach are discussed in detail. The

proposed approach is first illustrated on a basic numerical

example in Sect. 5. In that section, a comparison of the

deterministic, stochastic, fuzzy, and fuzzy-stochastic opti-

mization results is also presented by considering different

machine capability overlap cases and probability distribu-

tions. In Sect. 6, the performance of the proposed approach
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is tested on a real-life problem. Finally, conclusions and

future research are discussed in Sect. 7.

2 Literature review on robust FLD problems
under uncertainty

In this section, a brief literature survey on robust FLD

problems under uncertainty is presented. In fact, there are

two main sources of uncertainties in many real-world

facility layout design applications, namely (i) the uncertain

product demand (or process flow data) and (ii) machine

unavailability risks (or reliability) due to random machine

breakdowns. Under highly volatile manufacturing envi-

ronments, these uncertainties are essential concerns for

designing robust facility layouts in manufacturing indus-

tries since they may affect the performance of the manu-

facturing systems significantly (Kulturel-Konak 2007;

Neghabi et al. 2014; Salimpour et al. 2021; Esmikhani

et al. 2022; Pagone et al. 2023). As also highlighted by Liu

(2007), fuzzy, random, and hybrid (i.e., fuzzy-random)

variables are three main instances in uncertainty theory. In

fact, fuzzy and random variables are special cases of hybrid

variables. Furthermore, it was also noted by Liu

(2004, 2007) that probability measure (i.e., for random

variables) and credibility measure (i.e., for fuzzy variables)

are special cases of chance measure (i.e., for hybrid vari-

ables) and three of them are in the category of uncertain

measure. The uncertainty relations between these uncertain

variables and measures were also summarized by Liu

(2007). In the first part of this literature survey, we con-

centrated on the robust FLD in which uncertain product

demand and process flow data are considered. Afterward,

we reviewed the articles that focused on random machine

breakdowns, which correspond to machine unavailability

risks. Furthermore, articles that focused on uncertainties

other than demand (or process flow) and machine break-

downs are also reviewed in the last part of this survey.

An overview of the articles which dealt with the

uncertain product demand and/or process flow data can be

summarized as follows: One of the pioneering studies was

performed by Rosenblatt and Lee (1987) on a robustness

approach for a single period plant layout problem under

stochastic demand data. They targeted to generate robust

layout alternatives that perform well under many different

scenarios. In a similar way, Aiello and Enea (2001) also

proposed a fuzzy approach to the robust FLP where the

market demand was represented by triangular fuzzy num-

bers. Ertay et al. (2006) introduced a robust layout

framework that is based on the integration of data envel-

opment analysis (DEA) and analytic hierarchy process

(AHP) methodologies. Furthermore, they handled demand

variability by means of fuzzy linguistic variables while

gathering data related to the activity relationships for a

computer-aided layout-planning tool, i.e., VisFactory.

Kulturel-Konak (2007) discussed the most recent

advancements and approaches to model and analyze

uncertainties in FLD problems. She has presented a

detailed review and classification of all of the former

studies in this field. She also highlighted that inclusion of

the uncertainty in FLD models is very essential for their

applicability in real-life settings. This is because nowadays,

business economies become even more volatile and pro-

duct life cycles shorten continuously. Therefore, the con-

figuration of robust and flexible facility layouts under such

dynamic and uncertain conditions is vital for both manu-

facturing and service industries. Moslemipour et al. (2012)

also presented a detailed review of intelligent approaches

along with their advantages and disadvantages for design-

ing dynamic and robust layouts in flexible manufacturing

systems. A simulation-based approach was developed by

Jithavech and Krishnan (2010) for a risk-based FLD

problem under stochastic product demand. They first uti-

lized the simulation method for risk evaluation and pre-

diction of the uncertainty, and then, a genetic algorithm

(GA) was designed to produce the layout alternatives for

both the forecasted demand case and the risk-based layout

design. Pillai et al. (2011) developed a simulated annealing

(SA)-based metaheuristic algorithm to design a robust

layout for the dynamic plant layout problem under a

dynamic demand environment. They proposed a robust

layout procedure to cope with this dynamic environment

and produce layout alternatives with minimum material

handling and relocation costs for an expected demand

scenario. A GA-based evolutionary fuzzy approach was

developed by Drira et al. (2013) for solving a dynamic

layout problem with increasing uncertainty in customer

demands over time. The production demand of each part

was defined by using triangular fuzzy numbers. They also

concluded that degradation of the available information on

customer demands may significantly impact the facility

layout, and therefore, demand uncertainty has to be con-

sidered if a robust layout is required. A mixed-integer

nonlinear programming model was proposed by Izadinia

et al. (2014) for a robust multi-floor layout problem

(MFLP) in which material flows among the departments

and storages were changed in the pre-specified intervals.

Vitayasak and Pongcharoen (2015b) aimed to analyze the

impact of demand variation over time periods on a robust

machine layout design problem in which total material

handling distance was minimized by a GA-based meta-

heuristic approach. A Comparison of the re-layout and

robust layout approaches was also carried out by Vitayasak

and Pongcharoen (2015a) for a non-identical machine

layout problem under stochastic demand. A greedy

heuristic procedure was developed by Zhao and Wallace
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(2015) for solving a single-product capacitated FLD

problem which aims to minimize total expected material

handling cost under uncertain demand. Actually, they

assumed that the product demand varies according to a

known continuous probability distribution from period to

period. By using this heuristic approach, the stochastic

FLD problem was converted into a traditional quadratic

assignment problem (QAP). Celik et al. (2016) proposed a

dynamic programming-based heuristic procedure for solv-

ing a multi-period stochastic distributed FLD problem,

which aims to determine the relative locations of the

multiple copies of capacitated machinery. The dynamic

and stochastic nature of demand and the possibility of re-

layouts were also considered while minimizing the

expected total material handling cost. An integrated per-

mutation-based GA and robust optimization technique was

introduced by Fazlelahi et al. (2016) for the dynamic

facility layout problem with demand uncertainty. They

aimed to produce a unique robust layout plan for all of the

time periods. A position-based flexible particle swarm

optimization (PSO) algorithm was proposed by Zha et al.

(2017) to solve a robust dynamic facility layout model with

unequal-area departments. They took into account the

uncertain product demands, which are represented by fuzzy

random variables. Moslemipour et al. (2017) proposed a

novel mathematical model based on the QAP formulation

for designing a dynamic robust facility layout. They sup-

posed that the periodic product demands are normally

distributed with known parameters, i.e., mean, standard

deviation, and covariance, which vary randomly from one

period to another. A hybrid algorithm that integrates the

SA algorithm, ant colony, clonal selection, and robust

layout design approaches was employed by Moslemipour

et al. (2018) to solve a stochastic dynamic facility layout

problem where product demands were defined as normally

distributed random variables. Peng et al. (2018) proposed a

mathematical programming model, which also considers

transport device assignment for the stochastic dynamic

facility layout problem. In order to generate multiple

demand scenarios randomly, they utilized the Monte Carlo

simulation approach. A scenario-based stochastic opti-

mization model was proposed by Şahinkoç and Bilge

(2018) depending on the classical QAP formulation in

which part flows between the departments are uncertain.

After transforming this scenario-based uncertainty into a

multi-objective optimization model, they developed a

multi-objective evolutionary algorithm to find the Pareto

optimal set regarding different robustness performance

measures. A robust optimization model was developed by

Xiao et al. (2019) for an unequal-area dynamic FLD

problem with demand and logistics uncertainties. In order

to deal with the dynamic changes in product demand and

mix, Pourvaziri et al. (2022) developed an approach that

decomposes the robust facility layout design problem into

two sub-problems. In the first sub-problem, they con-

structed a robust layout by using a design-of-experiment

(DOE) approach, and then, a branch-and-cut algorithm was

applied to solve the second sub-problem to obtain the best

routes of products in each time period. A hybrid algorithm

based on the Nested Partitions (NP) and SA algorithms was

designed by Khajemahalle et al. (2021) for the robust

dynamic facility layout problem. They assumed that the

material flows between departments and rearrangement

costs are uncertain parameters whose values varied in the

symmetric range of intervals. A new hybrid MADM model

that is based on the interval type-2 fuzzy-full consistency

method (IT2F-FUCOM), interval type-2 fuzzy activity

relationship charts (IT2F-ARCs), and the measurement

alternatives and ranking according to the compromise

solution (MARCOS) method was developed by Gölcük

et al. (2022) for evaluating facility layout alternatives.

Although there are many studies on the robust FLD

problems with uncertain (i.e., fuzzy or stochastic) demand

and process flow data, the number of studies focusing on

the uncertainty in machine unavailability risks (or break-

downs) is very limited in the literature. In the literature on

FLD problems, the articles that considered the uncertainties

in machine breakdowns with maintenance issues are sum-

marized as follows: Vitayasak and Pongcharoen (2016)

stated that machine breakdown is a stochastic or random

event, which is an essential concern for designing facility

layouts in manufacturing industries. Therefore, they pre-

sented a GA application for quantifying the effect of

breakdown maintenance on the performance of machine

layouts. They assumed that an alternative machine may be

assigned to perform the required manufacturing operations

if a machine is broken down in real-world settings. This

also affects the material handling distance since the route

of the machine sequence is changed. Similarly, in the

present paper, we also aim to provide a robust CBDL by

assigning alternative machines, which have the same pro-

cessing capabilities (or REs) as well as not broken down.

The study of Vitayasak and Pongcharoen (2016) was also

extended by Vitayasak et al. (2019) to incorporate dynamic

demand and machine maintenance planning options (i.e.,

preventive/corrective) for designing non-identical machine

layouts. They also implemented the GA approach to ana-

lyze the effects of these maintenance strategies under dif-

ferent demand distributions. They concluded that robust

layout designs which considered the random machine

breakdowns and preventive maintenance strategy may

cause lower costs in breakdown maintenance conditions

and also lead to the greatest reduction in material flow

distances when compared to the re-layout design approa-

ches. Based on this motivation, this paper proposes a robust

CBDL approach that is also able to specify critical
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machines with the most important processing capabilities.

Actually, we used the unsatisfied chance constraint sets to

determine these critical machines. Thus, more reliable and

efficient robust distributed layout alternatives can be

obtained by predetermining these critical machines, which

necessitate a preventive maintenance plan.

The FLD studies focusing on the other uncertainty

issues rather than the demand (or process flow) and

machine breakdowns are also summarized as follows:

Meller and Gau (1996) examined the adjacency-based,

distance-based, and weighted criteria facility layout

objectives to design robust layouts. Since specifying cer-

tain weights may not be an exact process, they employed a

discrete efficient frontier method with imperfect weighting

value information. An exact algorithm based on a dynamic

adaptive iterative procedure was developed by Neghabi

et al. (2014) for solving a robust multi-row FLP where the

size of each department is stated as uncertain. They defined

permissible intervals for the length and width of each

department. Nematian (2014) introduced a robust single-

row facility layout model with fuzzy random variables. The

cost of transmitting flows between departments, the length

of departments, and the minimum gap between depart-

ments were represented by LR fuzzy numbers. After

transforming the robust model into its crisp equivalent

form, a new exact algorithm based on an extended branch-

and-bound algorithm was applied to achieve optimal

solutions for several test problems. A bi-objective MIP

model was developed by Salmani et al. (2015) for solving a

robust multi-row facility layout problem with dynamic and

uncertain departments’ dimensions where each dimension

changes in a pre-determined interval. Morinaga et al.

(2017) introduced a robust facility layout planning method

by considering temporal efficiency and routing. For

enabling robustness, they assumed that the sum of products

varies over production scenarios with known probabilities.

Thus, an additional evaluation index has been specified to

obtain facility layouts by considering numerous scenarios.

They applied a simulation optimization approach with GA

to perform production scheduling within a reasonable time

since this additional index causes significant increases in

computational effort. In order to reduce this computational

load, Morinaga et al. (2019) also developed a new method

based on a sampling approach and GA. In that method,

individuals are evaluated based on the mean fitness in some

scenarios that are sampled randomly, and the selection

process is performed by using Welch’s test. Unlike the

existing studies in the literature, Targhi et al. (2019)

developed a mathematical programming model for a robust

three-dimensional and multi-floor facility layout problem.

Since the parameters of this problem can be changeable,

they utilized robust planning in overlapping constraints.

Hunagund et al. (2020) also developed a MILP model for

designing a robust unequal area facility layout with a

flexible bay structure under a dynamic environment.

Esmikhani et al. (2022) proposed a multi-objective popu-

lation-based SA algorithm (MPS) and a Modified Non-

dominated Sorting Genetic Algorithm (MNSGA-II) to

solve a fuzzy robust facility layout problem equipped with

cranes. In addition to the material flows between facilities,

they assumed that the facility dimensions are hybrid

uncertain parameters and stated as fuzzy random variables.

Most of the previously discussed studies are summa-

rized in Table 1 according to the problem type and char-

acteristics (i.e., problem objectives, equal or unequal

department areas, type of uncertainty: fuzziness and/or

stochasticity, uncertain components/parameters) and the

solution methodology. As it is clearly seen in Table 1, the

majority of available robust FLD approaches concentrated

on the uncertainty of product demand or process flow only.

However, there are still a few studies on the FLD

approaches with machine unavailability risks (or break-

downs). Actually, this is a research gap in the literature on

robust FLD problems. Moreover, none of the aforemen-

tioned studies considered the machines’ processing capa-

bilities that are defined in terms of REs. Fortunately,

consideration of these machining capabilities may provide

additional flexibility in case of machine breakdowns. In

other words, alternative machines that are not broken and

have the same processing capabilities can be used instead

of broken or inactive machines. It should also be noted here

that although several robust FLD approaches are available

in the literature, there is still a lack of studies on robust

distributed layout design approaches under uncertainty. In

other words, robust distributed layouts were rarely dis-

cussed in the existing literature. Finally, only one type of

uncertainty, i.e., either fuzziness or stochasticity (random-

ness) was considered by most of the previous studies

existing in the literature. However, different types of

uncertainties may generally arise simultaneously in many

real-life FLD problems. For that reason, these different

uncertainties should be considered together while gener-

ating robust facility layouts.

Based on these motivations, this paper also introduces a

hybrid solution approach based on a chance-constrained

stochastic program and an interactive fuzzy resolution

method for solving the proposed robust CBDL problem

with random machine availability and fuzzy demand/pro-

cess flow information. We also need to mention here that

we have considered both fuzzy (i.e., fuzzy demand quan-

tities/process flow data) and random variables (i.e., random

machine unavailability or breakdowns) but not considered

a hybrid uncertain variable in this paper. In other words,

some uncertain parameters are defined as fuzzy (i.e.,

demand quantities and therefore, part flows), whereas the

other uncertain parameter (i.e., machine breakdown or
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unavailability) is stated as a discrete random variable with

a known probability distribution, because demand quanti-

ties and the amounts of part flow among machines were

generally defined as either fuzzy or stochastic parameters

in many studies in the existing literature (Jithavech and

Krishnan 2010; Zhao and Wallace 2015; Vitayasak and

Pongcharoen 2015; Celik et al. 2016; Vitayasak et al. 2017;

Xiao et al. 2019; Zha et al. 2017, 2020; Khajemahalle et al.

2021; Gölcük et al. 2022; Pourvaziri et al. 2022). On the

other hand, since the machine breakdown is a random

event as well as a risk issue, it was generally defined as a

random variable with known probability distributions by

the previous research on the facility layout design problems

(Vitayasak and Pongcharoen 2016; Amri et al. 2016;

Vitayasak et al. 2019). Since the proposed robust CBDL

problem contains different types of uncertain variables

together (i.e., fuzzy demand quantities and therefore, part

flows and random machine breakdown), we proposed a

hybrid solution approach based on the integration of

chance-constrained stochastic programming (i.e., which is

a well-known technique in probability theory) and an

interactive fuzzy resolution method of Jimenez (2007) (i.e.,

which is also a well-known fuzzy mathematical program-

ming approach in credibility and fuzzy set theory). To the

best of our knowledge, there is no similar study in the

literature on such a robust CBDL approach under mixed

fuzzy and stochastic uncertainties. It should also be

emphasized here that if there was an appropriate hybrid

uncertain variable that contains both fuzziness and ran-

domness inherently, we could also utilize the hybrid

uncertainty and chance measure proposed by Liu (2007).

3 Description and mathematical
formulation of the robust biased CBDL
problem

The unbiased CBDL problem that doesn’t take into account

the demand and process flow information was first intro-

duced in (Baykasoğlu 2003; Baykasoğlu and Göçken

2010). Actually, the main aim of the unbiased CBDL is to

minimize the total distances from every unoccupied loca-

tion by a RE to the location where RE is available. In other

words, each processing capability can be accessed from

every location of the factory layout with a minimum total

distance. Afterward, Baykasoğlu and Subulan (2020)

extended the UBCB-DL by incorporating the demand and

process flow information of several parts and introduced a

new problem, namely the biased CBDL design. Unlike the

unbiased CBDL design problem, the biased version of this

problem aims to minimize both the total part flow rates and

distances from the unoccupied locations by REs to the

occupied ones. In other words, in addition to minimize theTa
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total distance covered, it is also targeted to achieve mini-

mum part flow rates from the unoccupied locations by a

machining capability to the locations where this capability

is available. Therefore, all of the machining capabilities in

terms of the REs can be distributed over the facility floor

by considering the transition rates between different REs.

On the other hand, these transition rates that are computed

by the demand quantities and processing routes of the parts

were assumed to take deterministic values in all of the

previous studies on the capability-based layout design

approaches (Baykasoğlu and Subulan 2020; Baykasoğlu

et al. 2022; Subulan et al. 2023). However, demand

quantities may include some sort of ambiguity, and there-

fore, uncertainty in these transition rates (or part flows)

should be considered to provide a robust distributed layout

design. Furthermore, random machine breakdowns are also

crucial in designing robust layouts. For all of these reasons,

this section introduces a new robust biased CBDL problem.

To do this, the original MILP model formulation of the

deterministic biased CBDL problem, which was formerly

developed by Baykasoğlu and Subulan (2020), is first

modified by incorporating probabilistic machine unavail-

ability (or breakdowns) and fuzzy transition rates that show

the dominant part flow patterns among different machining

capabilities (or REs). To this end, the inputs, outputs, and

objectives of the proposed robust CBDL problem are

summarized in Fig. 1. The modified MIP model with the

probabilistic and fuzzy constraints is formulated in

Eqs. (1)–(10) by using the mathematical nomenclature that

is given in Table 2. The description of mathematical

notation including model parameters and decision variables

is also demonstrated in Fig. 1.

As shown in Fig. 1 and the objective function in Eq. (1),

it is targeted to minimize the total part flow rates as well as

the total distance from the unoccupied locations by the

processing capabilities (or the locations with a broken

machine) to the locations where these capabilities are

available on active (or not broken) machines. In detail,

parts wherever on the factory floor can access all of the

required processing capabilities (REs) from their existing

location within a minimum distance and material flow. Due

to the unavailable REs and the broken machines, total

rectilinear distances and part flow rates between different

locations are considered simultaneously in Eq. (1).

Thus, all of the REs can be distributed appropriately

over the facility floor by considering the fuzzy part flow (or

transition) rates among different REs and the machine

unavailability risks (or machinery breakdown). Indeed,

Fig. 1 Summary of the inputs/outputs and objectives of the proposed robust biased CBDL problem under a mixed fuzzy-stochastic environment
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there will be part flows from an unoccupied location by a

RE to any occupied one in order to achieve the required

processing capability. It should also be noted here that if

the assigned machine to this location is broken down, part

flows should be realized by choosing another occupied

location with an active machine including that RE. By the

way, there may also be part flows from an occupied loca-

tion by a RE to another occupied one because of the

machine breakdown. In addition to minimize the total part

flow rates and total distances as formulated in Eq. (1), the

proposed robust BCB-DL approach also aims to predeter-

mine the critical machines which require preventive

maintenance actions. Actually, these critical machines can

be obtained from the stochastic optimization results, which

display the scenarios with unavailable or broken machines.

Minimize
X

i2N

X

j2Nn if g

X

r2R
firj þ Zirj
� �

� dij ð1Þ

Subject to:
X

i2N
yki ¼ 1 8k 2 K ð2Þ

X

k2K
yki ¼ 1 8i 2 N ð3Þ

X

j2Nn if g
Zirj � Nj j � 1ð Þ: 1�

X

j2Nn if g
Zjri

0
@

1
A

8i 2 Nn jf g; 8r 2 R

ð4Þ

Pr
X

j2Nn if g
Zjri � 1�

X

k2K
akr:yki:uk

8
<

:

9
=

;� h 8i 2 N; 8r 2 R

ð5Þ

Pr
X

k2K

X

t2Rn rf g

fFPtr � akt � yki � uk �
X

j2Nn if g
firj �M � 1� zjri

� �
8
<

:

9
=

;

� b 8i 2 N; 8r 2 R

ð6Þ
firj �M � Zjri 8i 2 N; 8j 2 Nn if g; 8r 2 R ð7Þ

firj � 0 and continuous 8i 2 N; 8j 2 N; 8r 2 R ð8Þ

yki; zijr 2 0; 1f g 8i 2 N; 8j 2 N; 8k 2 K; 8r 2 R ð9Þ

uk is a discrete random variable with probability of pk
8k 2 K

ð10Þ

Let us explain the constraints of the proposed fuzzy-

stochastic MIP model. According to the constraint set in

Eq. (2), each machine can only be assigned to one location

Table 2 Mathematical nomenclature for the proposed robust CBDL problem

Indices and Sets

i; jð Þ 2 N Set of locations in the distributed layout

k 2 K Set of machines

r 2 R Set of Resource Elements (REs)

m 2 M Set of manufactured parts

Q Set of parts that have transitions from RE t to r in their processing routes

Parameters

dij Rectilinear distance between locations i and j

akr 1, if machine k has processing capabilities including the RE r; 0 otherwise

~Dm Fuzzy demand quantity for part m

smtr Number of transitions from RE t to r in the process route of part m

fFPtr
Fuzzy transition rates/flow patterns between the RE t and r in the process routes of all parts

uk Discrete random variable for the availability of machine k

pk Probability for the availability of machine k

h Satisfaction probability of the chance-constraint set in Eq. (5)

b Satisfaction probability of the chance-constraint set in Eq. (6)

S Scenario or sample size in the chance-constrained stochastic program

M A huge positive number

Decision variables

yki 1, if machine k is assigned to location i; 0 otherwise

zirj 1, if i is the closest location to location j for the unavailable RE r

firj Part flow rate from location i to j for the unavailable RE r
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on the factory floor. Additionally, when a machine is

assigned to a location, then all of its processing capabili-

ties/REs are also occupied in that location. This study also

assumed that each location on the facility floor has an equal

size, which is able to locate any machine. Constraint set in

Eq. (3) guarantees that only one machine can be assigned

to each location on the factory floor. Actually, these

assignment constraints in Eqs. (2)–(3) aim to choose the

optimal locations of the machines. According to the con-

straint set in Eq. (4), if location i is not occupied by the RE

r, whereas this processing capability is available at the

nearest location j, a part flow from location i to j will be

carried out to achieve that RE. In this situation, the binary

variable, i.e.,zjri, takes the value of ‘‘1,’’ which means that

there is a part flow from location i to j to access RE r.

Moreover, this constraint also maintains that the part flows

can be realized to this occupied location j by the RE r from

the maximum number of |N|-1 unoccupied locations on the

facility floor. In fact, |N|-1 is utilized in this formula to

avoid the usage of a positive Big M value (Baykasoğlu and

Subulan 2020). The chance constraint set in Eq. (5) ensures

that if a machine k, which doesn’t include the RE r is

assigned to location i, then this location needs to achieve

RE r with minimum distance. In detail, a part flow is

needed from location i to the nearest location j where RE r

is available. It should be noted here that the probabilistic

breakdown of machine k has been already considered by

this constraint with the stochastic right-hand side. In other

words, the random machine unavailability is formulated by

this chance constraint set because the random machine

breakdowns cannot be known with certainty in real-life

dynamic manufacturing environments but may have known

probability distributions. Thus, it is assumed that in a long-

term planning horizon, machine k may be in active status

with a pre-specified probability of pk, and therefore, it may

also be in inactive or broken status with an unavailability

probability of 1� pkð Þ. If machine k that is assigned to

location i is broken down, then all the processing capa-

bilities will disappear automatically from that location i.

For that reason, a robust distributed layout design that

considers the machine unavailability risk or breakdowns is

generally desired by the facility designers. Thus, the

availability of machine k, i.e., uk, is defined as a discrete

random variable with known probability. If machine k

becomes an active statue (or available), then uk will take

the value of ‘‘1’’ with the probability of pk. Otherwise, if it

becomes inactive status, then this random variable will take

the value of ‘‘0’’ with the probability of 1� pkð Þ. This also
means that pk corresponds to the machine reliability in the

long-term planning horizon. With the help of the random

machine unavailability risk formulation in this chance

constraint set in Eq. (5), although the machine k which is

assigned to location i includes the RE r, it may not be in

active status because of the machinery breakdown. In this

case, a part flow must be realized again from location i to

the nearest location j for reaching that RE r. By using the

chance constraint set in Eq. (6), part flow rates among

various facility locations can be computed for different

REs. Indeed, these flow rates can be calculated as a result

of the generated distributed layout design. In other words,

their values mainly depend on the machine location

assignments. For that reason, if the RE r is not included by

machine k that is assigned to location i, there will be part

flows from that location i to the nearest location j including

that RE r. Thus, the number of part flows should be greater

than the total transition rates between the available REs

t 2 Rð Þ and unavailable REs r r 2 R and r 6¼ tð Þ at this

location i. In Eq. (6), the probabilistic machine unavail-

ability risks are again considered since the machine k with

RE t may be broken down, and therefore, this location also

needs to reach the RE t as well as RE r. In this situation, a

part flow from location i to its nearest location j is needed

for both cases to reach the RE r. However, it should be

emphasized here that there is an inaccessibility risk of that

RE r from the unoccupied location i because of this

chance-constrained stochastic programming formulation.

In fact, these probabilistic constraint sets in Eqs. (5)–(6)

may not be satisfied 100% of the time since the machine

availabilities are defined as discrete random variables with

known probabilities. Instead, it is targeted to find a robust

CBDL that will satisfy these probabilistic constraints under

a pre-specified percentage, i.e., 90 or 95 percent of the

time. In other words, the generated distributed layout

alternatives may be feasible for 95% or 90% of all

instances for the random machine breakdowns.

It should also be noted here that if one or more machines

are broken down in any scenario, they may cause a vio-

lation of the chance constraint sets in Eqs. (5)–(6). In this

case, one or both of these probabilistic constraints will be

unsatisfied in that scenario. Therefore, the unsatisfied sce-

narios including the machinery breakdowns will show

critical machines. Thus, we cannot distribute the machines’

processing capabilities (or REs) appropriately over the

facility floor in case of critical machines are broken down.

In other words, there will be no feasible distributed layout

alternative for these unsatisfied scenarios. On the contrary,

even if some broken machines are available, there may be

no unsatisfied scenario in stochastic optimization results. In

this case, there will be no critical machines, and therefore,

machine unavailability risks may be insignificant. Actually,

we may encounter this situation when all of the REs or

processing capabilities are covered by many alternative

machines. Thus, when a machine including the required RE

is broken down, alternative machines can come into play.

On the other hand, if all of the alternative machines for a
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RE are broken down, the probabilistic chance constraints

are not satisfied in that scenario. In a nutshell, capability

overlaps shown in the binary machine–capability matrix

akrð Þ play a significant role in stochastic optimization

results, which help us to determine these critical machines.

In addition to the random machine breakdowns, we may

not know the dominant flow patterns between different REs

with certainty, because the demand quantities of the man-

ufactured parts may have some sort of ambiguity in many

real-life manufacturing environments. Therefore, transition

frequencies or flow rates among different REs, i.e., fFPtr

are also considered as uncertain layout parameters in

Eq. (6) and represented by triangular fuzzy numbers. In

order to calculate fuzzy flow rates and then construct the

transition rate matrix, we formulated Eq. (11), which

mainly uses the fuzzy demand quantities and the pre-

specified deterministic processing routes of parts. Accord-

ing to this formula, the number of transitions among var-

ious REs should be first obtained from the processing

routes of all the manufactured parts. Afterward, the fuzzy

transition rate matrix can be computed as in Eq. (11) by

using the fuzzy division operator. On the other hand, it

should be highlighted here that this transition rate matrix

may not be always constant and change according to the

dynamic demand fluctuations in the future. Moreover,

additional processing operations (or route changes) of new

parts or discontinued production of some outdated parts

may also affect this transition rate matrix. For all of these

reasons, the construction of a fuzzy transition rate matrix

may be more convenient to generate robust layout design

options in dynamic and uncertain manufacturing

environments.

fFPtr ¼
P

m2Q ~Dm � smtrP
m2M

P
t2R

P
r2Rn tf g ~Dm � smtr

8 t; rð Þ 2 R ð11Þ

Finally, Eq. (7) ensures that if location j is not the

closest point to location i for reaching the RE r, there will

be no part flows between these locations. To satisfy this

statement, a big M value is utilized to avoid the redundant

part flows over the facility floor. In Eq. (8), the part flow

rates computed by Eq. (6) are defined as continuous vari-

ables. Furthermore, it should be noted here that the total

amount of part flow rates should be equal to ‘‘1.’’ Equa-

tion (9) ensures the binary integrality of the variables for

the machine location assignments and part flow require-

ments for the unavailable REs between different locations

of the factory floor. Lastly, in Eq. (10), machine avail-

ability is defined as a discrete random variable with known

probability.

4 The proposed hybrid solution approach

This section presents a hybrid solution approach based on a

chance-constrained stochastic program with a fuzzy reso-

lution approach. Actually, we employed the chance-con-

strained stochastic programming approach of Charnes and

Cooper (1959) simultaneously with a well-known interac-

tive fuzzy resolution method of Jimenez et al. (2007) to

transform the proposed fuzzy-stochastic optimization

model into its crisp equivalent form. Indeed, since the

probabilistic constraint set in Eq. (6) incorporates both

fuzzy and stochastic parameters, the usage of such a hybrid

solution approach is necessary. Baykasoğlu and Subulan

(2019) also employed a similar hybrid approach while

dealing with a fuzzy-stochastic intermodal fleet manage-

ment problem. In a similar way, the chance-constrained

stochastic programming approach is first utilized in this

paper to handle the probabilistic constraint set in Eq. (5) in

which the discrete random variables are defined only for

the uncertain machine breakdowns with known probability

values. In fact, we considered two different probability

distribution functions for the random machine breakdowns

to analyze the effects of these distributions on the

stochastic optimization results: (i) Basic discrete random

variable with known probabilities and (ii) Binomially dis-

tributed random machine breakdowns with one trial only

n ¼ 1ð Þ and the success probabilities of pk. Actually, this

distribution case also corresponds to Bernoulli random

variables because of using only one trial. This means that

any machine can be broken down only once in the planning

period or the facility designer desires to take only one

sample from the manufacturing environment for random

machine unavailability. If the number of trials is increased,

the facility designer needs to collect more data related to

machine failures and breakdown statistics. When the basic

discrete random variables with known probabilities are

defined for the probabilistic machine breakdowns, the

chance constraint set in Eq. (5) can be converted into its

deterministic equivalent nonlinear form as in Eq. (14) by

using critical values of these random machine breakdowns.

To do this, these critical values, i.e., wir, can be computed

by integrating the probability density function in Eq. (12)

and inverse cumulative distribution function (see in Eq. 13)

of this discrete random variable, i.e., uk (Bisschop and

Roelofs 2006; Gupta et al. 2003; Subulan 2020). Let us

define the cumulative distribution function of this basic

discrete random variable, i.e., F wirð Þ ¼ fir8i 2 N; 8r 2 R,

and then, the deterministic approximation of this proba-

bilistic constraint in Eq. (5) can be formulated as in

Eqs. (12)–(14) by using its inverse cumulative (or quantile)

function, i.e., F�1 firjpkð Þ.
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wir ¼ F�1 firjpkð Þ ¼ 1 0\uk � 1

0 uk � 0

�
8k 2 K ð13Þ

1�
X

j2Nn if g
Zjri �

X

k2K
akr � yki � wir 8i 2 N; 8r 2 R ð14Þ

On the other hand, when the binomially distributed

random variables are defined for the probabilistic machine

availabilities, these critical values, i.e., wir, can be deter-

mined as in Eq. (15) by using the inverse cumulative

function of the binomial distribution.

wir ¼ F�1 firjw; n; pkð Þ ¼
Xw

q¼1

n
q

� �
� pkð Þq� 1� pkð Þn�q 8i

2 N; 8r 2 R

ð15Þ

where w represents the number of successes (or active

statue of machine k with a probability of pk) in an inde-

pendent Bernoulli trial (n ¼ 1Þ. Similarly, the chance

constraint set in Eq. (6) should also be transformed into its

deterministic equivalent non-linear form. However, this

chance constraint set involves not only probabilistic

machine availabilities ukð Þ but also includes a fuzzy

parameter, i.e., fFPtr, that corresponds to uncertain transi-

tion frequencies (or part flow rates) between different

machining capabilities/REs. For that reason, the a-para-
metric approach of Jimenez et al. (2007) is first applied to

transform this fuzzy constraint into its crisp equivalent

form. Afterward, the chance-constraint stochastic pro-

gramming approach is implemented again to deal with the

random machine breakdowns. The fuzzy technological

coefficient, i.e., fFPtr, which is located on the left-hand side

of this probabilistic constraint in Eq. (6) is represented by a

triangular fuzzy number, i.e., FPp
tr;FP

m
tr ;FP

o
tr

� �
. In fact, the

left, core, and right margins of this triangular fuzzy number

display the pessimistic, most likely, and optimistic values

of the uncertain part flow rates, respectively. The expected

interval of this fuzzy parameter can be computed as in

Eq. (16). In addition, a-cut based fuzzy ranking procedure

of Jimenez (1996) is employed to carry out the fuzzy to

crisp transformation process. After completing this trans-

formation process, the chance constraint set in Eq. (6) can

be reformulated as in Eq. (17):

EI fFPtr

� �
¼ 1

2
� FPp

tr þ FPm
tr

� �
;
1

2
� FPm

tr þ FPo
tr

� �	 

ð16Þ

Pr
X

k

X

t2Rn rf g
a � FP

m
tr þ FPo

tr

2
þ 1� að Þ � FP

p
tr þ FPm

tr

2

� �8
<

:

�akt � yki � uk �
X

j2Nn if g
firj �M � 1� zjri

� �
9
=

;� b 8i 2 N; 8r 2 R

ð17Þ

where a is a parameter that demonstrates the feasibility

degree of the constraint set in Eq. (17). When the value of

this parameter is equal to ‘0,’ it corresponds to an unac-

ceptable or the most risky solution. On the other hand, one

can achieve a completely acceptable or risk-free solution

when its value is equal to ‘1.’ Through this parameter

whose value ranged from ‘0’ to ‘1,’ various layout design

alternatives can be produced under different uncertainty

levels. In other words, many a-acceptable layout design

options can be produced by taking into account the conflict

between the satisfaction degree of layout objectives and the

fulfillment degree of this fuzzy constraint. After perform-

ing the fuzzy to crisp transformation procedure, the chance

constraint set in Eq. (17) should also be converted into its

deterministic equivalent nonlinear form as in Eq. (14).

Similar to the previous formulations in Eqs. (12)–(15),

critical values of the random machine availabilities, i.e., wir

in Eq. (18) can be calculated by using its inverse cumu-

lative distribution functions, i.e., F�1 firjpkð Þ or

F�1 firjw; n; pkð Þ: A summary of the proposed hybrid

solution approach is also depicted in Fig. 2.
X

j2Nn if g
firj þM � 1� zjri

� �

�
X

k

X

t2Rn rf g
a � FP

p
tr þ FPm

tr

2
þ 1� að Þ � FP

m
tr þ FPo

tr

2

� �
� akt � yki � wir

8i 2 N;8r 2 R

ð18Þ

Unfortunately, it should be emphasized here that appli-

cation of the aforementioned fuzzy random to crisp trans-

formation may cause a highly nonlinear deterministic

equivalent mathematical model. Moreover, the solution of

this kind of mathematical program via the standard MIP

solvers of any optimization software is a challenging task,

because several auxiliary variables and additional con-

straints are needed to carry out these transformation

fx ukð Þ ¼ 1 if machine k is in active statue with probability of pk
0 if machine k is broken down with probability of 1� pkð Þ

�
8k 2 K ð12Þ
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operations. As a result, the required computational effort for

the solution of this kind of mathematical program will

increase significantly concerning the problem dimension. To

overcome this problematic issue, we use some special

commands and functions like @SPSTGRNDV, @SPDIST-

BINO, @SPTABLESHAPE, @SPTABLEOUTC,

@SPTABLEINST, @SPTABLERNDV, @SPSAMPSIZE,

@SPCHANCE, etc. of LINGO19.0 optimization software to

construct the chance constraint sets in Eqs. (5)–(6) and used

its powerful stochastic programming solver to solve the

present problem (LINDO Systems Inc. 2023). Actually, the

stochastic solver of LINGO 19.0, which can apply Benders

Decomposition and Genetic Algorithms, is used to achieve

high-quality robust solutions for the current fuzzy-stochastic

biased CB-DL problem.

5 Computational study with comparative
analysis

In this section, a numerical example is presented to illus-

trate the proposed robust biased CBDL problem and ana-

lyze the effects of different machine capability overlap

cases on the fuzzy-stochastic optimization results.

5.1 Data description for an illustrative example

The numerical example is composed of 6 machines and 6

locations in a 2 9 3 block plan, and the machine-pro-

cessing capability information related to the REs is shown

in Table 3. Each machine has a set of processing capabil-

ities which are described in terms of REs and total 6-REs

are available. The processing capability information of

machines given in Table 3 is also depicted in Fig. 3c,

which corresponds to the medium capability overlap case.

Based on this case, five different machine-RE matrices are

derived for ‘‘no,’’ ‘‘low,’’ ‘‘high,’’ ‘‘very high,’’ and ‘‘fully

overlap’’ cases (see Fig. 3a-f) to explore the impact of

different machine capability overlap cases on the opti-

mization results.

It is also intended to investigate the effects of the ran-

dom machine breakdowns on fuzzy-stochastic optimization

Fig. 2 Summary of the proposed hybrid solution approach based on a chance-constrained stochastic program with a fuzzy resolution approach

Table 3 Processing capabilities of machines in terms of the REs

Machine-1: RE1, RE2, RE3 Machine-4: RE3, RE4, RE6

Machine-2: RE1, RE2, RE5 Machine-5: RE4, RE5, RE6

Machine-3: RE1, RE3, RE4 Machine-6: RE2, RE5, RE6
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results in case of different machine capability overlaps. To

do this, different probability values (85% and 90%) for the

random machine availabilities are also tested for each

machine capability overlap case. Indeed, each machine will

become active status with a pre-specified probability of pk.

Otherwise, any machine may break down, and therefore, it

will be inactive status with the probability of 1� pkð Þ.
Actually, this probability information for the machine

availabilities is one of the most important layout parame-

ters for both discrete random variables and binomial dis-

tribution. Furthermore, fuzzy demand data with the

Fig. 3 a No, b low, c medium, d high, e very high, and f fully machine capability overlap cases

Table 4 Fuzzy demand

quantities and processing routes

of the manufactured parts

Parts Demands (in units) Process flow information in terms of REs (Processing routes)

1 (5, 10, 15) RE1–RE3–RE4–RE6–RE1

2 (20, 30, 40) RE2–RE4–RE5–RE3

3 (5, 15, 20) RE1–RE2–RE5–RE4–RE3–RE6

4 (10, 20, 30) RE1–RE4–RE2–RE1–RE5–RE2–RE3

5 (40, 50, 60) RE1–RE6–RE3–RE2–RE6–RE4–RE1

6 (5, 10, 20) RE3–RE1–RE6–RE5–RE1

7 (50, 70, 80) RE3–RE5–RE6–RE2

*RE is available

Table 5 Fuzzy transition rates (or uncertain part flow patterns) between different REs

RE1 RE2 RE3 RE4 RE5 RE6

(0,0,0) (0.01,0.016,0.016) (0.01,0.011,0.012) (0.019,0.021,0.024) (0.019,0.021,0.024) (0.128,0.131,0.14)

(0.019,0.02,0.024) (0,0,0) (0.019,0.021,0.024) (0.032,0.032,0.032) (0.01,0.016,0.016) (0.05,0.053,0.064)

(0.01,0.01,0.016) (0.05,0.053,0.064) (0,0,0) (0.01,0.011,0.012) (0.07,0.075,0.08) (0.01,0.016,0.016)

(0.05,0.053,0.064) (0.019,0.021,0.024) (0.01,0.016,0.016) (0,0,0) (0.032,0.032,0.032) (0.01,0.011,0.012)

(0.01,0.011,0.016) (0.019,0.021,0.024) (0.032,0.032,0.032) (0.01,0.016,0.016) (0,0,0) (0.07,0.075,0.08)

(0.01,0.011,0.012) (0.07,0.075,0.08) (0.05,0.053,0.064) (0.05,0.053,0.064) (0.01,0.011,0.016) (0,0,0)
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manufacturing routes (in terms of REs) of 7 different parts

are displayed in Table 4.

Based on this process flow information and fuzzy

demand data, the fuzzy transition rate matrix (or fuzzy part

flow rates among different REs) is computed by using

Eq. (11) and presented in Table 5. It should be noted here

that sum of the part flow rates in this table is also equal to a

fuzzy number, i.e., (0.918, 0.9996, 1.1233) which covers

the value of ‘‘1’’ as an expected result. Finally, unit part

flow (or material handling) costs are computed based on

the symmetric rectilinear distances between different

locations on the factory floor and given in Table 6.

5.2 Comparative results for deterministic, fuzzy,
stochastic, and fuzzy-stochastic cases

When the proposed fuzzy-stochastic programming model is

run with these data through the stochastic solver of LINGO

19.0 optimization software on an Intel Corei7 2 GHz IBM

PC, comparative results are provided for different capa-

bility overlap cases with distinct machine availabilities and

satisfaction probabilities of the chance constraint sets as

given in Tables 7, 8, 9. The details of the deterministic,

fuzzy, stochastic, and fuzzy-stochastic optimization cases

are first given in Table 7, where the sample size is set to 5,

machine availabilities and the satisfaction probabilities for

the chance constraint sets are equal to 90% and 80–90%,

respectively. The optimization details such as the total

number of random and integer variables, constraints, CPU

time, total solver iterations, and extended solver steps are

also reported in that table. It should be emphasized here

that the expected values of triangular fuzzy numbers are

calculated by using Eq. (19) while obtaining the deter-

ministic and stochastic optimization results. It is also

assumed that each machine will be active (or 100%

machine availability) in the deterministic cases. This

assumption is also valid for the fuzzy optimization cases,

where (a = 0 and a = 1) (Jimenez et al. 2007; Jimenez

1996).

EV fFPtr

� �
¼ FPp

tr þ 2:FPm
tr þ FPo

tr

4
8 t; rð Þ 2 R ð19Þ

It should also be noted here that the probabilistic

machine availabilities are defined as basic discrete random

variables with known probabilities in the stochastic opti-

mization case-1. On the other hand, these machine avail-

abilities are assumed to fit a binomial distribution in the

stochastic optimization case-2 to compare the results of

different probability distributions. In the fuzzy-stochastic

optimization cases, these different probability distributions

for the random machine availabilities or breakdowns are

also taken into account in addition to the fuzzy part flow

rates. In the stochastic and fuzzy-stochastic optimization

cases, the satisfaction probabilities for the chance con-

straints in Eqs. (5)–(6) are set to 80% and 90%, respec-

tively (see Table 7). According to the comparative analysis

in Table 7, the layout objective, which consists of total

distances and part flow rates decreases in all of the deter-

ministic, fuzzy, stochastic, and fuzzy-stochastic cases when

the machine capability overlap is increased. For instance,

the total layout score of the no overlap case is significantly

high (i.e., 51.41448) in deterministic optimization when

compared to the objective value of the fully overlap case

(i.e., 0). Thus, it is clear that the degree of machine capa-

bility overlap has a substantial effect on the layout objec-

tive. It is also obviously seen from Table 7 that the random

machine unavailability has also a considerable impact on

the layout objective. When the deterministic and stochastic

optimization cases are compared, it can be inferred that the

layout score will increase due to random machine break-

downs. It should also be highlighted here that a feasible

solution cannot be found for no overlap cases in all of the

stochastic and fuzzy-stochastic optimization cases due to

the unavailability of critical machines. It is also clearly

seen in Table 7 that binomially distributed random machine

availability may cause larger values for the layout objec-

tives. Furthermore, the deterministic equivalent form of the

binomial distribution may cause a larger number of integer

variables, but fortunately, the same number of total con-

straints. According to Table 7, there is no significant dif-

ference between the layout scores or objective values of the

deterministic and fuzzy optimization cases.

Indeed, the layout scores of deterministic cases took

values between the lowest (a = 1) and highest (a = 0)

uncertainty levels of the fuzzy optimization cases. This

means that the uncertainty in the part demands has not a

crucial influence on the total layout score as much as the

random machine breakdowns. Therefore, layout scores of

the fuzzy optimization cases are relatively low as in the

deterministic cases since the random machine breakdowns

are not considered. However, the layout score will increase

in the fuzzy optimization cases when a risk-free solution

Table 6 Unit part flow costs among fixed locations

Locations Locations

1 2 3 4 5 6

1 0 1 2 1 2 3

2 1 0 1 2 1 2

3 2 1 0 3 2 1

4 1 2 3 0 1 2

5 2 1 2 1 0 1

6 3 2 1 2 1 0
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Table 7 Comparative results of the deterministic, fuzzy, stochastic, and fuzzy-stochastic optimization cases

No

overlap

Low

overlap

Medium

overlap

High

overlap

Very high

overlap

Fully

overlap

Deterministic case Overall layout score 51.41448 25.72375 20.05333 13.7145 7.010125 0

CPU time (sec.) 8.59 1.33 15.96 7.61 16.12 0.09

Total solver iterations 101,030 15,320 293,150 75,531 224,817 0

Extended solver steps 680 247 11,746 5416 21,765 0

Total integer variables 252

Total constraints 481

Stochastic case-1 (discrete random variables

with known probabilities)

Total random

variables

6

Total integer variables

(Deteq.)

258

Total constraints

(Deteq.)

771

Overall layout score Infeasible

(N.A)

31.99182 24.20307 18.119 12.71015 7.010125

# of unsatisfied

scenarios for CCP1

5 1 1 1 1 1

Actual probability for

CCP1

0% 80% 80% 80% 80% 80%

# of unsatisfied

scenarios for CCP2

5 0 0 0 0 0

Actual probability for

CCP2

0% 100% 100% 100% 100% 100%

CPU time (sec.) 1.38 1.28 5.63 6.89 4.82 1.32

Total solver iterations 0 5782 83,376 93,312 43,281 6568

Extended solver steps 0 14 971 1655 2809 99

Stochastic case-2 (Binomial distribution) Total random

variables

6

Total integer variables

(Deteq.)

260

Total constraints

(Deteq.)

771

Overall layout score Infeasible

(N.A)

38.25903 30.54395 23.6171 18.41923 14.02025

# of unsatisfied

scenarios for CCP1

5 1 1 1 1 1

Actual probability for

CCP1

0% 80% 80% 80% 80% 80%

# of unsatisfied

scenarios for CCP2

5 0 0 0 0 0

Actual probability for

CCP2

0% 100% 100% 100% 100% 100%

CPU time (sec.) 1.61 2.99 11.42 23.12 13.76 4.76

Total solver iterations 0 41,380 143,314 252,765 151,771 58,376

Extended solver steps 0 19 518 1760 1760 933

Fuzzy case (a = 0) Overall layout score 51.3365 25.6386 19.9593 13.6331 6.9588 0

CPU time (sec.) 8.77 0.96 9.74 8.86 5.35 0.009

Total solver iterations 10,829 9954 155,883 59,457 32,755 0

Extended solver steps 723 132 4090 3373 2970 0
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Table 7 (continued)

No

overlap

Low

overlap

Medium

overlap

High

overlap

Very high

overlap

Fully

overlap

Fuzzy case (a = 1) Overall layout score 51.49245 25.8089 20.14735 13.7959 7.06145 0

CPU time (sec.) 7.28 1.08 5.02 17.14 19.49 0.09

Total solver iterations 87,588 12,255 99,820 181,584 203,952 0

Extended solver steps 503 192 3796 12,315 19,050 0

Fuzzy-stochastic case-1 (a = 0) Overall layout score Infeasible

(N.A)

31.8928 24.0983 18.0151 12.6214 6.9588

# of unsatisfied

scenarios for CCP1

5 1 1 1 1 1

Actual probability for

CCP1

0% 80% 80% 80% 80% 80%

# of unsatisfied

scenarios for CCP2

5 0 0 0 0 0

Actual probability for

CCP2

0% 100% 100% 100% 100% 100%

CPU time (sec.) 1.43 1.32 4.0 8.2 13.53 1.29

Total solver iterations 0 8505 53,461 115,247 154,565 6501

Extended solver steps 0 39 263 1376 6722 214

Fuzzy-stochastic case-2 (a = 0) Overall layout score Infeasible

(N.A)

38.1482 30.4241 23.4899 18.2956 13.9176

# of unsatisfied

scenarios for CCP1

5 1 1 1 1 1

Actual probability for

CCP1

0% 80% 80% 80% 80% 80%

# of unsatisfied

scenarios for CCP2

5 0 0 0 0 0

Actual probability for

CCP2

0% 100% 100% 100% 100% 100%

CPU time (sec.) 2.44 2.79 7.91 13.76 13.98 5.97

Total solver iterations 0 34,099 108,925 147,976 160,771 75,157

Extended solver steps 0 29 248 1061 1861 1234

Fuzzy-stochastic case-1 (a = 1) Overall layout score Infeasible

(N.A)

32.09085 24.30785 18.2229 12.7989 7.06145

# of unsatisfied

scenarios for CCP1

5 1 1 1 1 1

Actual probability for

CCP1

0% 80% 80% 80% 80% 80%

# of unsatisfied

scenarios for CCP2

5 0 0 0 0 0

Actual probability for

CCP2

0% 100% 100% 100% 100% 100%

CPU time (sec.) 1.47 1.15 8.91 6.44 6.51 0.69

Total solver iterations 0 6665 126,006 74,110 81,924 5247

Extended solver steps 0 46 1350 1056 3227 149
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(a = 1) is desired by the facility designer. If the most risky

solution is provided under the highest uncertainty level,

this layout score will also reduce (a = 0). Therefore, vari-

ous layout design alternatives can be obtained by changing

the value of these parameters.

Finally, when the results of fuzzy-stochastic optimiza-

tion cases, which consider both fuzzy and stochastic layout

design parameters, are evaluated, it can be concluded that

the layout scores took relatively fewer values when com-

pared to the stochastic optimization cases (a = 0). Never-

theless, the layout scores will take larger values than the

stochastic optimization cases when the risk-free layout

design is needed (a = 1). The number of unsatisfied sce-

narios is equal to ‘‘1’’ for the first chance constraint set in

Eq. 5 (CCP1) in all the stochastic and fuzzy-stochastic

optimization cases. Therefore, the actual satisfaction

probability of the CCP1 is also equal to its target proba-

bility (i.e., 80%). On the other hand, since all of the 5

scenarios are fully satisfied for the second chance con-

straint set in Eq. 6 (CCP2), its actual probability (i.e.,

100%) is larger than its target probability, i.e., 90%.

5.3 Computational analysis of the fuzzy-
stochastic optimization results

In the fuzzy-stochastic optimization cases-1 and 2 (a = 0

and a = 1), all of the satisfied and unsatisfied scenarios

with the machine availabilities are also presented in

Table 7 (continued)

No

overlap

Low

overlap

Medium

overlap

High

overlap

Very high

overlap

Fully

overlap

Fuzzy-stochastic case-2 (a = 1) Overall layout score Infeasible

(N.A)

38.36985 30.6638 23.7443 18.54285 14.1229

# of unsatisfied

scenarios for CCP1

5 1 1 1 1 1

Actual probability for

CCP1

0% 80% 80% 80% 80% 80%

# of unsatisfied

scenarios for CCP2

5 0 0 0 0 0

Actual probability for

CCP2

0% 100% 100% 100% 100% 100%

CPU time (sec.) 1.34 3.54 8.27 17.92 14.08 5.07

Total solver iterations 0 42,150 104,781 191,261 136,713 43,373

Extended solver steps 0 26 464 1180 1469 476

Sample size = 5; machine availabilities = 90%; probability for breakdowns = 10%; probabilities for the chance-constraint sets = 80% and 90%

Deterministic equivalent form (Deteq.)

Table 8 Machine availabilities

under different scenarios and

the constraint satisfaction for

medium overlap case

Scenario No Machine Availabilities (uk) CCP1 CCP2

1 2 3 4 5 6

Fuzzy-stochastic case-1 (a = 0 and a = 1)

1 A A A A A A Satisfied Satisfied

2 NA NA A A A A Unsatisfied Satisfied

3 A A A A A A Satisfied Satisfied

4 A A A A A A Satisfied Satisfied

5 A A NA A A A Satisfied Satisfied

Fuzzy-stochastic case-2 (a = 0 and a = 1)

1 NA A A NA A NA Unsatisfied Satisfied

2 A A A A A A Satisfied Satisfied

3 A A NA A A A Satisfied Satisfied

4 A A A A NA A Satisfied Satisfied

5 A A A A A A Satisfied Satisfied

A Aavailable, NA not available
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Table 8 for the medium overlap case only. According to

this table, CCP1 is unsatisfied in scenario-2 of fuzzy-

stochastic optimization case-1, where machines-1 and 2 are

broken down at the same time. Since the unsatisfied sce-

nario-2 is compatible with the unavailability of machines-1

and 2, these machines can be described as critical machi-

nes, which necessitate preventive maintenance actions to

avoid their simultaneous downtime. On the other hand,

both CCP1 and CCP2 are satisfied in scenario-5 despite the

unavailability of machine-3. Thus, the generated robust

Table 9 A detailed calculation of the part flow-based layout objective in a deterministic optimization case

REs Occupied locations RE2 RE3 RE4 RE5 RE6 Score of part flow rates

RE1 Location-1 0 0 1 9 0.02125 1 9 0.02125 1 9 0.13375 0.51175

Location-3 1 9 0.0145 0 0 1 9 0.02125 1 9 0.13375

Location-5 0 1 9 0.011 1 9 0.02125 0 1 9 0.13375

RE1 RE3 RE4 RE5 RE6

RE2 Location-1 0 0 1 9 0.032275 1 9 0.0145 1 9 0.055 0.285075

Location-2 1 9 0.02125 1 9 0.02125 1 9 0.032275 0 0

Location-5 0 1 9 0.02125 1 9 0.032275 0 1 9 0.055

RE1 RE2 RE4 RE5 RE6

RE3 Location-1 0 0 1 9 0.011 1 9 0.075 1 9 0.0145 0.3865

Location-3 0 1 9 0.055 0 1 9 0.075 1 9 0.0145

Location-4 1 9 0.0115 1 9 0.055 0 1 9 0.075 0

RE1 RE2 RE3 RE5 RE6

RE4 Location-3 0 1 9 0.02125 0 1 9 0.0323 1 9 0.011 0.26385

Location-4 1 9 0.055 1 9 0.02125 0 1 9 0.0323 0

Location-6 1 9 0.055 1 9 0.02125 1 9 0.0145 0 0

RE1 RE2 RE3 RE4 RE6

RE5 Location-2 1 9 0.012 0 1 9 0.0323 1 9 0.0145 0 0.24615

Location-5 0 0 1 9 0.0323 1 9 0.0145 1 9 0.075

Location-6 1 9 0.012 1 9 0.02125 1 9 0.0323 0 0

RE1 RE2 RE3 RE4 RE5

RE6 Location-2 1 9 0.011 0 1 9 0.055 1 9 0.055 0 0.36

Location-4 1 9 0.011 1 9 0.075 0 0 1 9 0.012

Location-6 1 9 0.011 1 9 0.075 1 9 0.055 0 0

Total part flow-based layout objective 2.0533

Total distance-based layout objective 18

Total layout score 20.0533

Fig. 4 Machine location assignment and RE distributions for fuzzy-stochastic case-1 in scenario-2 (a = 0)
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Fig. 5 RE distributions of the most risky robust layout for fuzzy-stochastic case-1 in scenario-2 (a = 0)

Fig. 6 Machine location

assignment and RE distributions

for fuzzy-stochastic case-1 in

scenario-2 (a = 1)

Fig. 7 RE distributions of the risk-free robust layout for fuzzy-stochastic case-1 in scenario-2 (a = 1)

Fig. 8 Machine location

assignment and RE distributions

for medium overlap case in

deterministic optimization
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layout is able to satisfy all of the probabilistic constraints

despite the absence of this non-critical machine-3. In a

similar manner, the instantaneous unavailability of the

critical machines-1, 4, and 6 caused the unsatisfied sce-

nario-1 in the fuzzy-stochastic optimization case-2. On the

other hand, the unavailability of non-critical machines-3

and 5 doesn’t cause any constraint violation since their

alternative machines have the same processing capabilities

and are not broken down.

As mentioned before, when a machine is broken down,

all of its processing capabilities (or REs) are disappeared

from its location. For instance, the machine location

assignments of the most risky robust layout design under

scenario-2 (a = 0) and its relevant RE distributions are

displayed in Figs. 4 and 5, respectively. Similarly, the risk-

free robust layout design with its RE distributions is also

depicted in Figs. 6 and 7 for the same fuzzy-stochastic

optimization case-1 (a = 1). It should be noted here that the

machines-1 and 2 are broken down in both of these risky

and risk-free robust layout designs. Moreover, as clearly

seen in Figs. 4 and 6, the produced robust layout designs

are completely different from each other under different

uncertainty levels of the fuzzy part flow rates.

Therefore, although the fuzzy part flow rates have not a

significant effect on the layout score, different uncertainty

levels of fuzzy part flows may change the robust layout

design completely. This is the reason why we took into

account the fuzzy part flow rates with such an a-parametric

fuzzy resolution approach. To compare the results of

deterministic and fuzzy-stochastic optimization cases, the

proposed approach is also applied without considering any

type of uncertainty. The resulting machine locations

assignments and the relevant RE distributions are depicted

in Figs. 8, 9 for the medium capability overlap case in

deterministic optimization.

In this deterministic optimization case, all of the

machines are assumed to be available (or not broken down)

and the part flows rates are known exactly. In this situation,

the distance-based objective is equal to 3 for each RE

distribution as shown in Fig. 9 since there is only one unit

distance from each unoccupied location to its nearest

occupied location by the relevant REs. Therefore, the total

distance-based layout objective is equal to 18 (6 9 3)

when all the REs are considered. Similarly, the calculation

of this distance-based layout score has been already illus-

trated based on RE-1 in Figs. 5 and 7 for the fuzzy-

stochastic optimization cases.

Additionally, a detailed calculation of the part flow-

based layout objective is shown in Table 9 for the deter-

ministic optimization case. It should be noted here that

while calculating this part flow-based layout objective, the

expected values of triangular fuzzy numbers are used to

obtain crisp values for the part flow rates (see Eq. 19). It is

seen in Table 9 that the total layout score, which is equal to

the sum of the total distance and part flow-based layout

objectives, is equal to 20.0533 which has already been

found by LINGO 19.0 solver for the medium capability

overlap case (see Table 7). The calculation of the part flow-

Fig. 9 RE distributions of the generated layout for the medium overlap case in deterministic optimization
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based layout objective is also presented in Table 10 for the

fuzzy-stochastic optimization case-1 under scenario-2

(a = 0).

As an expected result, the part flow-based layout

objective is comparatively high (i.e., 33.6164) due to the

simultaneous unavailability of machines-1 and 2 (see

Table 10). On the other hand, the part flow-based layout

score (i.e., 19.9072) will decrease considerably under

scenarios-1, 3, and 4 (a = 0) (see Table 11) because none

of the machines are broken down in these scenarios. The

final layout score that is already given in Table 7 (i.e.,

24.0983) will be the expected values of these 5 scenarios

with equal probabilities (i.e., 20%). As it is also obviously

seen in Tables 7, 10, 11, the total layout score took values

between the minimum (i.e., 19.9072) and maximum (i.e.,

33.6164) layout scores under different scenarios.

Finally, in order to analyze the effects of different

machine availabilities (%) and the satisfaction probabilities

for the chance constraint sets, additional computational

analyses are carried out and presented in Tables 12, 13. In

Table 12, the machine availability rates are reduced to 85%

and the target probability of CCP1 is increased up to 90%.

In this circumstance, any feasible solution couldn’t be

found for the low and medium capability overlap cases

similar to the no overlap case. However, we could achieve

the optimal solutions for these cases by using the formerly

defined probability values given in Table 7. According to

Tables 7 and 12, infeasible or feasible solutions but com-

paratively higher layout scores will be provided if one

decreases the machine availabilities and increases the sat-

isfaction probabilities of the chance constraint sets. It

should also be noted here that the number of infeasible

solutions will increase and the layout scores will deterio-

rate in case of the binomially distributed random machine

breakdowns. Fortunately, fewer amount of infeasible

solutions and comparatively better layout scores can be

Table 10 Calculation of the part

flow-based layout objective for

fuzzy-stochastic case-1 in

scenario-2 (a = 0)

REs Occupied locations RE2 RE3 RE4 RE5 RE6 Score of part flow rates

RE1 Location-5 1 9 0.013 0 0 1 9 0.02 1 9 0.1295 0.1625

RE1 RE3 RE4 RE5 RE6

RE2 Location-6 1 9 0.02 1 9 0.02 0 0 0 0.04

RE1 RE2 RE4 RE5 RE6

RE3 Location-1 2 9 0.01 3 9 0.0515 0 1 9 0.0725 0 0.384

Location-5 0 1 9 0.0515 0 1 9 0.0725 1 9 0.013

RE1 RE2 RE3 RE5 RE6

RE4 Location-1 2 9 0.0515 3 9 0.02 0 1 9 0.0321 0 0.3222

Location-5 0 1 9 0.02 0 1 9 0.0321 1 9 0.0105

Location-6 1 9 0.0515 0 1 9 0.013 0 0

RE1 RE2 RE3 RE4 RE6

RE5 Location-2 1 9 0.0105 2 9 0.02 1 9 0.0321 1 9 0.013 0 0.1382

Location-6 1 9 0.0105 0 1 9 0.0321 0 0

RE1 RE2 RE3 RE4 RE5

RE6 Location-1 2 9 0.0105 3 9 0.0725 0 0 1 9 0.0105 0.5695

Location-2 1 9 0.0105 2 9 0.0725 1 9 0.0515 1 9 0.0515 0

Location-6 1 9 0.0105 0 1 9 0.0515 0 0

Total part flow-based layout objective 1.6164

Total distance-based layout objective 32

Total layout score 33.6164
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obtained when the random machine breakdowns are

defined as basic discrete variables with known probabili-

ties. Similarly, computational analyses are also carried out

by reducing the target probabilities of the chance constraint

sets (CCP1 and CCP2) to 60% under the same machine

availabilities (i.e., 85%). In this case, feasible and com-

paratively better layout scores are provided as in Table 13

for all of the capability overlap cases. However, it should

be emphasized here that higher satisfaction probabilities

are generally desired by the facility designers for these

chance constraint sets. Lastly, feasible solutions couldn’t

be found for the no overlap case in fuzzy-stochastic opti-

mization case-2. Moreover, it is clearly seen in Table 13

that the usage of discrete random variables with known

probabilities for the uncertain machine unavailability may

provide better quality layout scores when compared to the

binomial distribution.

Table 11 Calculation of part flow-based objective for fuzzy-stochastic case-1 in scenarios-1, 3, and 4 (a = 0)

REs Occupied locations RE2 RE3 RE4 RE5 RE6 Score of part flow rates

RE1 Location-3 0 0 1 9 0.02 1 9 0.02 1 9 0.1295 0.492

Location-4 0 1 9 0.0105 1 9 0.02 0 1 9 0.1295

Location-5 1 9 0.013 0 0 1 9 0.02 1 9 0.1295

RE1 RE3 RE4 RE5 RE6

RE2 Location-3 0 0 1 9 0.0321 1 9 0.013 1 9 0.0515 0.2402

Location-4 0 1 9 0.02 1 9 0.0321 0 1 9 0.0515

Location-6 1 9 0.02 1 9 0.02 0 0 0

RE1 RE2 RE4 RE5 RE6

RE3 Location-1 1 9 0.01 1 9 0.0515 0 1 9 0.0725 0 0.367

Location-3 0 0 1 9 0.0105 1 9 0.0725 1 9 0.013

Location-5 0 1 9 0.0515 0 1 9 0.0725 1 9 0.013

RE1 RE2 RE3 RE5 RE6

RE4 Location-1 1 9 0.0515 1 9 0.02 0 1 9 0.0321 0 0.2307

Location-5 0 1 9 0.02 0 1 9 0.0321 1 9 0.0105

Location-6 1 9 0.0515 0 1 9 0.013 0 0

RE1 RE2 RE3 RE4 RE6

RE5 Location-2 1 9 0.0105 1 9 0.02 1 9 0.0321 1 9 0.013 0 0.2358

Location-4 0 0 1 9 0.0321 1 9 0.013 1 9 0.0725

Location-6 1 9 0.0105 0 1 9 0.0321 0 0

RE1 RE2 RE3 RE4 RE5

RE6 Location-1 1 9 0.0105 1 9 0.0725 0 0 1 9 0.0105 0.3415

Location-2 1 9 0.0105 1 9 0.0725 1 9 0.0515 1 9 0.0515 0

Location-6 1 9 0.0105 0 1 9 0.0515 0 0

Total part flow-based layout objective 1.9072

Total distance-based layout objective 18

Total layout score 19.9072
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Table 12 Computational analysis on the fuzzy-stochastic optimization cases

No

overlap

Low

overlap

Medium

overlap

High

overlap

Very high

overlap

Fully

overlap

Fuzzy-stochastic case-1

(a = 0)

Overall layout score Infeasible Infeasible Infeasible

(N.A)

39.5289 33.8585 27.8352

# of unsatisfied scenarios for

CCP1

5 5 5 0 0 0

Actual probability for CCP1 0% 0% 0% 100% 100% 100%

# of unsatisfied scenarios for

CCP2

5 5 5 0 0 0

Actual probability for CCP2 0% 0% 0% 100% 100% 100%

CPU time (sec.) 1.17 1.52 9.0 10.23 14.36 3.23

Total solver iterations 0 0 72,876 166,300 162,638 50,942

Extended solver steps 0 0 2 537 1001 1400

Fuzzy-stochastic case-2

(a = 0)

Overall layout score Infeasible Infeasible Infeasible Infeasible Infeasible 48.7116

# of unsatisfied scenarios for

CCP1

5 5 5 5 5 0

Actual probability for CCP1 0% 0% 0% 0% 0% 100%

# of unsatisfied scenarios for

CCP2

5 5 5 5 5 0

Actual probability for CCP2 0% 0% 0% 0% 0% 100%

CPU time (sec.) 1.37 1.32 5.45 5.5 14.51 2.42

Total solver iterations 0 0 50,276 61,089 174,978 24,083

Extended solver steps 0 0 2 0 631 352

Fuzzy-stochastic case-1

(a = 1)

Overall layout score Infeasible Infeasible Infeasible 39.91125 34.2868 28.2458

# of unsatisfied scenarios for

CCP1

5 5 5 0 0 0

Actual probability for CCP1 0% 0% 0% 100% 100% 100%

# of unsatisfied scenarios for

CCP2

5 5 5 0 0 0

Actual probability for CCP2 0% 0% 0% 100% 100% 100%

CPU time (sec.) 1.86 1.44 6.21 10.34 10.14 1.9

Total solver iterations 0 0 69,228 143,111 164,432 25,706

Extended solver steps 0 0 2 932 734 446

Fuzzy-stochastic case-2

(a = 1)

Overall layout score Infeasible Infeasible Infeasible Infeasible Infeasible 49.43015

# of unsatisfied scenarios for

CCP1

5 5 5 5 5 0

Actual probability for CCP1 0% 0% 0% 0% 0% 100%

# of unsatisfied scenarios for

CCP2

5 5 5 5 5 0

Actual probability for CCP2 0% 0% 0% 0% 0% 100%

CPU time (sec.) 1.54 1.33 2.62 5.27 12.75 2.04

Total solver iterations 0 0 7211 76,568 178,399 34,337

Extended solver steps 0 0 0 0 507 197

Sample size = 5; machine availabilities = 85%; probability for breakdowns = 15%; probabilities for the chance-constraint sets = 90%
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6 A real-life application study

In order to display the usefulness, validity, and practicality

of the proposed robust biased CBDL approach, an appli-

cation study is presented for a real-life cellular manufac-

turing system which was previously introduced by

Baykasoğlu and Gindy (2000) to the literature.

6.1 Data description and company information

The manufacturing company receives various customer

orders with relatively low demand quantities and com-

monly encounters with layout design changes. Since the

highly uncertain nature of the customer demand, they

cannot estimate the demand quantities accurately. For that

Table 13 Computational analysis on the fuzzy-stochastic optimization cases

No

overlap

Low

overlap

Medium

overlap

High

overlap

Very high

overlap

Fully

overlap

Fuzzy-stochastic case-1

(a = 0)

Overall layout score 51.3365 25.6386 19.9593 13.6331 6.9588 0

# of unsatisfied scenarios for

CCP1

2 2 2 2 2 2

Actual probability for CCP1 60% 60% 60% 60% 60% 60%

# of unsatisfied scenarios for

CCP2

1 1 1 1 1 1

Actual probability for CCP2 80% 80% 80% 80% 80% 80%

CPU time (sec.) 8.83 1.26 9.48 6.89 7.39 0.26

Total solver iterations 93,373 12,557 149,735 55,910 42,653 0

Extended solver steps 533 222 3723 3737 4646 0

Fuzzy-stochastic case-2

(a = 0)

Overall layout score Infeasible 31.8928 24.0983 18.0151 12.6214 6.9588

# of unsatisfied scenarios for

CCP1

5 2 2 2 2 2

Actual probability for CCP1 0% 60% 60% 60% 60% 60%

# of unsatisfied scenarios for

CCP2

5 0 0 0 0 0

Actual probability for CCP2 0% 100% 100% 100% 100% 100%

CPU time (sec.) 1.92 16.55 16.64 28.23 44.66 1.68

Total solver iterations 0 171,532 200,260 289,808 391,867 10,462

Extended solver steps 0 417 1441 10,255 36,953 220

Fuzzy-stochastic case-1

(a = 1)

Overall layout score 51.49245 25.8089 20.14735 13.7959 7.06145 0

# of unsatisfied scenarios for

CCP1

2 2 2 2 2 2

Actual probability for CCP1 60% 60% 60% 60% 60% 60%

# of unsatisfied scenarios for

CCP2

1 1 1 1 1 1

Actual probability for CCP2 80% 80% 80% 80% 80% 80%

CPU time (sec.) 10.26 1.09 6.07 23.19 10.9 0.26

Total solver iterations 111,489 11,389 114,267 305,812 125,530 0

Extended solver steps 867 163 4202 22,346 11,579 0

Fuzzy-stochastic case-2

(a = 1)

Overall layout score Infeasible 32.09085 24.30785 18.2229 12.7989 7.06145

# of unsatisfied scenarios for

CCP1

5 2 2 2 2 2

Actual probability for CCP1 0% 60% 60% 60% 60% 60%

# of unsatisfied scenarios for

CCP2

5 0 0 0 0 0

Actual probability for CCP2 0% 100% 100% 100% 100% 100%

CPU time (sec.) 2.91 5.38 34.23 25.49 52.96 1.53

Total solver iterations 0 62,048 364,527 282,836 466,142 9615

Extended solver steps 0 140 3121 9457 42,259 240

Sample size = 5; machine availabilities = 85%; probability for breakdowns = 15%; probabilities for the chance-constraint sets = 60%
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reason, facility managers determined to describe fuzzy

demand quantities for these customer orders. In the present

case, the facility floor is organized as a classical cellular

manufacturing environment without considering the

machines’ processing capabilities. The 4 9 3 block plan

and the existing cellular layout of the facility have already

been shown in Baykasoğlu and Gindy (2000) as depicted in

Fig. 10. In detail, there are 3 manufacturing cells and 7

different machines inside the factory. However, some

machines have multiple copies. Therefore, there are a total

of 12 machines and 12 locations available on the factory

floor where copied machines include the same REs. The

manufactured parts in each cell are also shown in Fig. 10.

Because of the extensive material handling operations

between different cells and low cell capacity utilizations,

the facility managers are not fully satisfied with the per-

formance of the existing cellular layout because non-value-

added material handling operations between different cells

are needed for some parts. This may also cause extra

machine requirements. For instance, one more copy of

machine-2 is required for cell-2 and two more copies of

machine-2 are needed for cell-3. This leads to significant

time and money consumption, which also decreases the

efficiency and profitability of the manufacturing company.

Furthermore, the capacity utilizations are calculated for

each cell by including the extra copies of the required

machines as 61%, 57%, and 72%, respectively. Therefore,

the facility managers seek a better robust layout alternative,

which improves the efficiency of the material handling

operations and increases the machine capacity utilization

by considering the machines’ processing capabilities (or

REs), unavailability risks, and uncertainty in the part flow

rates. To do this, the proposed R-CBDL approach was

considered as an alternative method to obtain optimal

product flows between different departments under uncer-

tainty. Before applying the proposed approach, 11 different

REs are first specified by the facility process planners for

the machines’ processing capabilities. Thereafter, the

uncertain demand quantities for the customer orders are

represented by using triangular fuzzy numbers as given in

Table 14. In this table, in addition to the monthly fuzzy

demand quantities, the processing requirements (or process

flow information) of a total of 20 manufactured parts are

also identified in terms of the REs. Furthermore, the

number of copies for available machines with their pro-

cessing capability information (i.e., REs) is shown in

Table 15. The probabilities for the machine availabilities

that are calculated based on the previous machine break-

down statistics of the facility reports are also given in

Table 15.

Through the fuzzy demand quantities and process flow

information in Table 14, the fuzzy transition rate matrix

between different REs is calculated by using Eq. (11) as in

Table 16. It should be noted here that the sum of all the

transition rates is also equal to a fuzzy number, i.e., (0.956,

1.001, 1.056) which already contains ‘‘1’’. Finally, the

Fig. 10 Existing cellular layout of the manufacturing facility with part assignments

Table 14 Fuzzy demand quantities and the process flow information

Parts (Demand 9 1000) Processing routes

1 (1, 3, 5) RE1–RE2–RE4

2 (0.3, 1, 2) RE1–RE2–RE3

3 (0.5, 2.5, 4) RE5–RE6–RE7

4 (0.52, 1.52, 2.52) RE8–RE5

5 (0.48, 1.48, 2.18) RE7–RE4–RE5

6 (1.2, 3.5, 5.5) RE8–RE6–RE7

7 (0.5, 1, 1.5) RE8–RE9–RE10

8 (0.5, 2, 3) RE9–RE10–RE11

9 (1, 3, 5) RE5–RE1–RE2

10 (0.8, 2, 3) RE3–RE4

11 (1.8, 4.5, 7) RE5–RE6–RE9

12 (0.3, 1, 2) RE10–RE9–RE8

13 (1, 3, 5) RE5–RE8–RE10

14 (1, 2.5, 4) RE8–RE7–RE5

15 (1, 2.5, 3.5) RE1–RE2

16 (0.5, 1.9, 2.7) RE3–RE4

17 (1, 2.4, 3.4) RE6–RE7–RE8

18 (0.6, 1.2, 2.5) RE8–RE9–RE10–RE11

19 (0.3, 1.3, 2.3) RE5–RE2

20 (1, 3, 5) RE7–RE8–RE9

4386 K. Subulan et al.

123



sample size (or the number of scenarios) is set to 5 and the

target probabilities of the chance constraint sets are spec-

ified as 80% by the facility managers. The facility

managers preferred to use discrete random variables with

known probabilities since the binomial distribution may

Table 15 Processing capabilities in terms of the REs and the number of available copies of the machine tools (Baykasoğlu and Gindy 2000)

Machines Copies Resource elements (REs) Machine availability

(%)
1 2 3 4 5 6 7 8 9 10 11

Drill Press-1 (M1) 1 * 95

MHP Machining Centre-1 (M2-M3-

M4)

3 * * * * * * * * 90

Colchester Lathe-1 (M5-M6) 2 * * * * 85

MHP MT50 NC Lathe-2 (M7-M8) 2 * * * * * 85

CNC Grinding Machine-1 (M9-M10) 2 * * 90

Jones and Shipman Cyc. Grinder

(M11)

1 * 95

Jones * Ship. Surf. Grinder (M12) 1 * 95

Table 16 Fuzzy transition rate matrix between different machining capabilities (or REs) for the real-life case study

RE1 RE2 RE3 RE4 RE5 RE6 RE7 RE8 RE9 RE10 RE11

RE1 – (0.117,

0.118,

0.119)

RE2 – (0.011,

0.012,

0.015)

(0.036,

0.037,

0.038)

RE3 – (0.044,

0.046,

0.048)

RE4 – (0.017,

0.018,

0.019)

RE5 (0.036,

0.037,

0.038)

(0.011,

0.016,

0.018)

– (0.082,

0.084,

0.087)

(0.036,

0.037,

0.038)

RE6 – (0.096,

0.099,

0.104)

(0.054,

0.056,

0.064)

RE7 (0.016,

0.017,

0.018)

(0.031,

0.036,

0.037)

– (0.064,

0.067,

0.071)

RE8 (0.017,

0.018,

0.019)

(0.042,

0.043,

0.044)

(0.032,

0.036,

0.037)

– (0.065,

0.069,

0.075)

(0.036,

0.037,

0.038)

RE9 (0.011,

0.012,

0.015)

– (0.052,

0.054,

0.057)

RE10 (0.011,

0.012,

0.015)

– (0.039,

0.040,

0.042)

RE11 –
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result in worse layout scores as discussed previously in

Sect. 5.

6.2 Details of the fuzzy-stochastic optimization
results

By using the given data for this case study, the proposed

fuzzy-stochastic programming model is run under different

uncertainty levels (a-cuts) and probabilistic scenarios with

the help of LINGO 19.0 optimization software on an Intel

Corei7 2 GHz IBM PC. The details of the fuzzy-stochastic

optimization results within the 3-h runtime limit are pro-

vided as in Table 17. According to this table, the first

chance constraint set in Eq. 5 is satisfied with 80% actual

probability, whereas the second chance constraint set in

Eq. 6 is satisfied with 100% actual probability under all

uncertainty levels. This means that only one scenario may

cause unsatisfactory solutions because of the random

machine breakdowns. It is also clearly seen in Table 17 that

the layout score increases when the feasibility degree of the

fuzzy-stochastic constraint set (CCP2) gets higher. Actu-

ally, this is an expected result since the risk-free layout

design options may generally result in more costly solu-

tions. It should be highlighted here again that the optimal

layout scores are not acquired within the 3-h runtime limit.

However, the generated layout design alternatives under all

uncertainty levels can be stated as applicable since their

optimality gaps are low enough (or within accept-

able levels). The details of the satisfied/unsatisfied sce-

narios with the machine statue (available or broken down)

are also presented in Table 18. It should be noted here that

the same machine availabilities and the resulting constraint

satisfaction are yielded under different scenarios for both

the most risky (a ¼ 0) and risk-free (a ¼ 1) cases.

It is also seen in Table 18 that MHP Machining Center-1

has critical machines that necessitate effective preventive

maintenance actions. In other words, the simultaneous

breakdown of the machines-2 and 3 (M2 and M3 in MHP

Machining Center-1) may cause unsatisfied CCP1 (sce-

nario#2), which violates the first probabilistic constraint set

(see Tables 17, 18). Although this machining center has

three copies of the same machines, the simultaneous

breakdown of two of them may violate the first chance

constraint set. It should also be noted here that if all the

machines (M2, M3 and M4) in this MHP Machining

Center-1 are broken down, the proposed fuzzy-stochastic

programming model cannot provide any feasible solution

because some of the REs, i.e., RE3, RE8, RE9, and RE11,

are covered by only MHP Machining Center-1 (see

Table 15). Thus, the simultaneous breakdown of three of

them will cause an infeasible solution since it is not pos-

sible to reach these machining capabilities or REs from any

Table 17 Fuzzy-stochastic

optimization results under

different uncertainty levels

a-feasibility degree of CCP2 a = 0 a = 0.3 a = 0.5 a = 0.7 a = 1

Total random variables 12

Total integer variables (Deteq.) 1738

Total constraints (Deteq.) 4383

Total nonzeros (Deteq.) 39,850

Total solver iterations 89,593,646 103,498,008 146,909,359 89,344,547 97,063,615

Extended solver steps 720,796 694,363 968,737 416,112 413,412

CPU time (sec.) 10,800 10,800 10,800 10,800 10,800

Layout score (Obj. value) 144.866 145.177 145.3622 145.5363 145.7975

Optimality gap 12% 18% 21% 19% 16%

# of unsatisfied scenarios (CCP1) 1 1 1 1 1

Actual probability (CCP1) 80% 80% 80% 80% 80%

Unsatisfied scenarios (CCP2) 0 0 0 0 0

Actual probability (CCP2) 100% 100% 100% 100% 100%

Table 18 Machine availabilities

under different scenarios and

the resulting constraint

satisfaction (a = 0 and 1)

Scenario No Machine Availabilities (uk) CCP1 CCP2

1 2 3 4 5 6 7 8 9 10 11 12

1 A A A A A A NA NA A A A A Satisfied Satisfied

2 A NA NA A A A A A A A A A Unsatisfied Satisfied

3 A A A A A NA A A A A A A Satisfied Satisfied

4 A A A A A A A A A A A A Satisfied Satisfied

5 A A A NA A A A A A A A A Satisfied Satisfied

4388 K. Subulan et al.

123



factory location. On the other hand, the simultaneous

breakdown of non-critical machines M7 and M8 (MHP

MT50 NC Lathe-2) doesn’t lead to any unsatisfied scenario

(see scenario#1) since the REs (i.e., RE1, RE2, RE4, RE7,

and RE10) that are covered by these machines have already

been included by other alternative machines like MHP

MT50 NC Lathe-2 and MHP Machining Center-1.

Finally, the produced most risky robust layout design

alternative (a ¼ 0) including the machine location assign-

ment and the relevant RE distributions is demonstrated in

Figs. 11 and 12 under scenario#4 where all of the machines

Fig. 11 Machine location assignment and RE distributions for the most risky case under scenario#4 (a = 0)

Fig. 12 RE distributions of the produced layout design for the most risky case under scenario#4 (a = 0)
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are available (or not broken down). It is also clearly seen in

Table 18 that all of the probabilistic constraint sets are

satisfied under scenario#4. As displayed in Figs. 11, 12,

since none of the machines are broken down under sce-

nario#4, all of their processing capabilities appeared in the

relevant RE distribution table (or binary matrix). In the RE

Fig. 13 Machine location

assignment and RE distributions

for the most risky case under

scenario#2 (a = 0)

Fig. 14 RE distributions of the produced layout design for the most risky case under scenario#2 (a = 0)
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distributions in Fig. 12, ‘‘1’’ shows that the relevant factory

location contains this RE. Otherwise, the factory locations

that don’t cover the relevant RE are marked with ‘‘0’’. In

fact, these REs distributions can be provided by using the

machine location assignment decisions. If a machine is

assigned to any location, all its processing capabilities or

REs will be covered by that location.

Fig. 15 Machine location

assignment and RE distributions

for the risk-free case under

scenario#4 (a = 1)

Fig. 16 RE distributions of the produced robust layout design for the risk-free case under scenario#4 (a = 1)
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In a similar way, the produced robust capability-based

distributed layout design and its relevant RE distributions

are also depicted in Figs. 13, 14 under scenario#2, where

M2 and M3 in MHP Machining Center-1 are broken down.

Since machines M2 and M3 in MHP Machining Center-1

are broken down under scenario#2, their locations don’t

contain their processing capabilities as shown in Fig. 13.

Their REs are also marked with ‘‘0’’ for these locations in

the RE distribution tables (see Fig. 14). When the layout

score of the robust layout design under this scenario#2 is

Fig. 17 Machine location

assignment and RE distributions

for the risk-free case under

scenario#2 (a = 1)

Fig. 18 RE distributions of the produced robust layout design for the risk-free case under scenario#2 (a = 1)
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compared to the scenario#4, it is obvious that its layout

score will get worse since the unavailable machines lead to

this unsatisfied scenario. In other words, total part flow

rates as well as the total distance from the unoccupied

locations to the occupied ones by the REs will increase

when these critical machines are broken down.

Finally, the machine location assignments and the RE

distribution tables of the generated risk-free robust layout

design alternatives (a ¼ 1) are also displayed in Figs. 15,

16, 17, 18 under both scenario#4 and scenario#2. In con-

trast with the most risky case (a ¼ 0), the feasibility degree

of the fuzzy-stochastic constraint set in Eq. (6) will be

100%, and therefore, this robust layout design option in

Figs. 15, 16, 17 can be stated as a fully acceptable one,

which is generally desired by risk-averse facility designers.

However, there is still one unsatisfied scenario for this

robust layout design option because of the random machine

breakdowns under scenario#2. Fortunately, if the proba-

bility values for the machine availabilities that are formerly

given in Table 15 are increased by performing additional

preventive maintenance activities, the number of unsatis-

fied scenarios for these chance constraint sets will decrease.

For that reason, a risk-averse facility designer should

focus more on accurate demand forecasting and machine

failure prevention systems to obtain risk-free robust layout

design options under various scenarios and uncertainty

levels.

6.3 Comparison of results with the existing
cellular layout of the manufacturing
company

Lastly, all of the generated solutions by the proposed robust

biased CBDL approach are compared to the existing cel-

lular layout of the manufacturing company as given in

Table 19 and Fig. 19. In order to make a proper compar-

ison, the machine location assignment in the previously

given existing cellular layout design (see Fig. 10) is uti-

lized while running the proposed fuzzy-stochastic pro-

gramming model. When the results of the existing cellular

layout are examined in detail, it is recognized that the same

machines, i.e., M2 and M3 in MHP Machining Center-1,

are also critical for the existing cellular manufacturing

system since the unavailability of these machines might

cause violation of the chance constraint set under scenar-

io#2. It is obviously seen from the comparative results in

Table 19 and Fig. 19 that considerable improvements in the

total expected layout score can be achieved through the

Table 19 Comparison of the

existing cellular layout with the

proposed R-CBDL design

approach

Total layout scores (Objective values)

The existing cellular layout The proposed robust CBDL design approach

The most risky case (a = 0) 180.554 144.866

The risk-free case (a = 1) 181.508 145.7975

Fig. 19 Comparison of the scores of the proposed layouts with the existing cellular layout under different uncertainty levels
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proposed R-CBDL approach. Indeed, the proposed

approach can provide considerable decreases in the total

part flows among different machines for each uncertainty

level. Moreover, each processing capability can be reached

from every location of the facility floor with the minimum

total distance despite the random machine breakdowns.

Therefore, more effective and efficient material handling

operations can be yielded by using the proposed robust

biased CBDL approach in case of uncertain demand data

and random machine breakdowns.

7 Conclusions, discussions, and future
research directions

In the present paper, a novel robust capability-based dis-

tributed layout (R-CBDL) design problem, which can

handle random machine breakdowns (or machine unavail-

ability risk) and fuzzy demand/process flow information, is

introduced for the first time in the literature. First, a new

fuzzy-stochastic optimization model of this problem is

formulated based on the original deterministic MILP model

of Baykasoğlu and Subulan (2020). Then, a hybrid solution

approach based on a chance-constrained stochastic pro-

gram and an interactive fuzzy resolution method is also

proposed to transform the fuzzy-stochastic optimization

model into its deterministic equivalent form. The proposed

approach can address different types of uncertainties con-

currently such as randomness and fuzziness and can also

generate various layout design alternatives under different

probabilistic scenarios and uncertainty levels concerning

the facility designer’s risk attitude (i.e., risk-averse or

seeker).

The extensive computational experiments based on both

an illustrative example and a real-life application study

have revealed the following key findings, conclusions, and

managerial insights to the facility designers: (i) According

to the deterministic, fuzzy, stochastic, and fuzzy-stochastic

optimization results, it is inferred that the layout score that

is composed of total distances and part flow rates will

decrease when the machine capability overlap is increased.

Therefore, the degree of machine capability overlap has a

substantial effect on the layout objective under both crisp

and uncertain environments. (ii) The random machine

breakdown has also a considerable effect on the layout

objective. Indeed, when the deterministic and stochastic

optimization results are compared, it is inferred that the

layout score will deteriorate in case of random breakdowns

(or unavailability) of critical machines. In other words,

total part flow rates as well as the distances (i.e., the total

expected score of this robust layout design) from the

unoccupied locations to the occupied ones by the

machining capabilities will increase when some of the

critical machines are unavailable or broken down. Fortu-

nately, the proposed hybrid solution approach is able to

specify these critical machines (with the most vital pro-

cessing capabilities) by using the unsatisfied chance con-

straint sets. In fact, the simultaneous breakdown of critical

machines may lead to unsatisfied scenarios, whereas the

non-critical machines don’t cause violation of any chance

constraint since their alternative machines that have the

same processing capabilities are available or not broken

down. Consequently, facility managers and designers can

be aware of these critical machines and aim to increase

their reliability rates (or decrease their breakdown proba-

bilities) to maintain the continuous production of the

facilities. Thus, more reliable and robust layout design

alternatives are obtained via the proposed approach under

different probabilistic scenarios and uncertainty levels. (iii)

For the risk-averse facility designers, the proposed

approach generated a risk-free robust layout design alter-

native in which ‘‘the feasibility degree of fuzzy-stochastic

constraints is high (a = 1), whereas the number of unsat-

isfied scenarios for the chance constraints is low.’’ If the

machine availabilities are increased by performing addi-

tional preventive maintenance activities, the number of

unsatisfied scenarios for the chance constraint sets will

decrease. For that reason, risk-averse facility designers

should focus more on accurate demand forecasting and

machine failure prevention systems to obtain risk-free

robust layout designs. (iv) For a risk-seeking facility

designer, the proposed approach produced a risky layout

design alternative with a comparatively better layout score.

However, this layout design alternative will have a low

feasibility degree (a = 0) for the fuzzy-stochastic con-

straints and also a large number of unsatisfied scenarios for

the chance constraint sets. It should be emphasized here

that higher feasibility degrees and satisfaction probabilities

for the fuzzy and chance constraint sets are generally

desired by facility planners in real-life applications. (v) The

uncertainty in the part demands has not a crucial influence

on the layout objective (or score) as much as the random

machine breakdowns. On the other hand, different uncer-

tainty levels (a-cuts) of the fuzzy part flows may change

the facility layout design completely. This is the reason

why we took into account the fuzzy part flow rates with

such an a-parametric interactive fuzzy resolution approach.

(vi) The comparative results of the real-life application

study have also demonstrated that considerable improve-

ment (i.e., on average 24.5%) on the total expected layout

score can be achieved by using the proposed approach

when compared to the existing cellular layout of the

manufacturing company. In detail, it can provide consid-

erable decreases in the total part flows among different

machine locations for each uncertainty level. Therefore,

each machining capability can be reached from every
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location of the facility floor with minimum total distance

by considering the random machine breakdowns. Hence,

more efficient material handling operations can be acquired

via the proposed approach in case of uncertain demand,

process flows, and random machine breakdowns.

In the future, a matheuristic solution approach that

hybridizes a metaheuristic algorithm with the proposed

fuzzy-stochastic mathematical programming model can be

developed to solve the larger-sized problem instances.

Moreover, the proposed R-CBDL problem studied in this

paper has just considered equal machine sizes (or depart-

ment areas). Hence, the development of a fuzzy-stochastic

optimization model for an unequal-area R-CBDL design

problem can also be scheduled as future work. Further-

more, the hybrid uncertainty (or fuzzy random variables)

proposed by Liu (2007) that contains both fuzziness and

randomness inherently can also be used to deal with non-

deterministic layout design parameters in future research.
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