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a b s t r a c t

We explore the weak field and slow motion limits, Newtonian and Post-Newtonian limits, of the
energy–momentum powered gravity (EMPG), viz., the energy–momentum squared gravity (EMSG) of
the form f (TµνTµν ) = α(TµνTµν )η with α and η being constants. We have shown that EMPG with
η ≥ 0 and general relativity (GR) are not distinguishable by local tests, say, the Solar System tests;
as they lead to the same gravitational potential form, PPN parameters, and geodesics for the test
particles. However, within the EMPG framework, Mast, the mass of an astrophysical object inferred
from astronomical observations such as planetary orbits and deflection of light, corresponds to the
effective mass Meff(α, η,M) = M +Mempg(α, η,M), M being the actual physical mass and Mempg being
the modification due to EMPG. Accordingly, while in GR we simply have the relation Mast = M , in
EMPG we have Mast = M + Mempg. Within the framework of EMPG, if there is information about
the values of {α, η} pair or M from other independent phenomena (from cosmological observations,
structure of the astrophysical object, etc.), then in principle it is possible to infer not only Mast alone
from astronomical observations, but M and Mempg separately. For a proper analysis within EMPG
framework, it is necessary to describe the slow motion condition (also related to the Newtonian limit
approximation) by |peff/ρeff| ≪ 1 (where peff = p+pempg and ρeff = ρ+ρempg), whereas this condition
leads to |p/ρ| ≪ 1 in GR.

© 2023 Elsevier B.V. All rights reserved.
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1. Introduction

As is well known, the current standard, or ‘‘concordance’’
odel of cosmology is the ΛCDM model. In this model, the

structure and dynamics of the universe is governed by general
relativity (GR) with the addition of the cosmological constant Λ,
here the latter is used to explain the late-time acceleration of
he universe discovered around the turn of the millennium [1–7];
nd the cold dark matter (CDM) component, originally postulated
o explain the unexpected large velocities of the galaxies within
he Coma cluster, plays also a role in the early evolution of the
niverse, and structure formation. The ΛCDM model, which for
any years has been considered quite successful in explaining a
ide range of astrophysical and cosmological observations, has
ecently begun to suffer from tensions of various degrees of
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significance with newly acquired data, with increasing precision
and variety of cosmological observations [8–14]. These tensions
likely point to the need for new physics, either on the side of the
contents of the universe, or on the side of gravitation, i.e., how
the contents influence the geometry of the spacetime. This latter
option would lead to alternative/modified gravity theories as
replacement of GR [15–20].

However, precise Solar System observations are totally com-
patible with GR so far. In fact, the vast majority of the phenomena
can be explained, albeit with limited accuracy, even by New-
ton’s theory of gravity. Adopting an alternative theory should
not undermine these achievements; yet most of them do. For
example, in possibly the simplest extension, the Brans–Dicke
theory, the model parameter was constrained as ω ≳ 40000
t the 2σ confidence level from telemetry observations of the
assini spacecraft [21], whereas the initial formulation of the
heory had anticipated ω ∼ O(1) (ω −→ ∞ is the GR limit). In
he most common generalization of GR, f (R) theories, the scalar
urvature R satisfies a second order differential equation which

nduces non-Newtonian, Yukawa-type exponential potentials in
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he linearized level [22].1 For instance, a particular choice, f (R) =
− µ4/R was ruled out by data from Solar System tests. It has

lso been shown that f (R) gravity is strongly constrained by local
bservations [24–26] in the laboratory and solar scales and can
nly evade these tight gravitational tests through some screening
echanisms [27–29].
In the settings close to the Newtonian limit, the parametrized

ost-Newtonian (PPN) formalism describes the metric of any
ravitational theory with standard potentials and ten parameters
only γ = β = 1 being nonzero in GR) whose values can
haracterize the theory under consideration. The compatibility of
he Solar System observations referred to in the last paragraph is
eflected in the calculated parameters γ and β being very close to
and others very close to zero. For the current limits on all PPN
arameters, we refer the reader to Table 4 in [30]. The strongest
ound for γ (which controls the deflection of light) is determined

by the Shapiro time delay measurement of the Cassini–Huygens
tracking experiment, giving γ = 1 + (2.1 ± 2.3) × 10−5 [21,31].
Adopting the Cassini bound on γ , the latest constraints on β
(which controls the perihelion precession of Mercury) are β =
1+(−4.1±7.8)×10−5 from helioseismology data [32,33] and β =
1+(1.2±1.1)×10−4 from the lunar laser ranging experiment [34,
35]. Obviously, any theory of gravitation should also satisfy these
bounds on the values of PPN parameters to be considered viable,
regardless of how well it explains cosmological observations. In
fact, there is at least one well-known modified theory of gravity
that alters cosmological dynamics while leaving the predictions
at solar scales unchanged compared to those of GR; namely the
teleparallel equivalent of general relativity (TEGR), which gives
γ = β = 1 as in GR [36]; however, the concept of mass for the
central object seems ambiguous in this theory [23,37].

In the current paper, we will examine a specific version of
energy–momentum squared gravity (EMSG) [38–40], known as
energy–momentum powered gravity (EMPG) [39,40], to show
that it leaves the PPN parameters as in GR and to clarify the
mathematics and interpretation of weak field and slow motion
limits within the framework of EMSG—a framework closely re-
lated to modified gravity theories such as R+ f (Lm) [41] and R+
f (T ) [42], as all which are identical in that the source is minimally
coupled to the curvature. The EMSG theory [38–40], generalizes
the matter sector of GR with the arbitrary function of the Lorentz
scalar TµνTµν , viz., f (TµνTµν) included in the usual Einstein–
Hilbert action—here, Tµν is the energy–momentum tensor (EMT),
T above is its trace, Lm is the matter Lagrangian density and the
‘‘squared’’ terminology arises from the self contraction of EMT.
The EMSG theory has been studied so far mainly in cosmological
and partially in astrophysical contexts [38–40,43–64].

Some interesting features of the EMSG theory studied in the
framework of various models are the nonconservation of EMT
[39,40]; the possibility of driving late time acceleration from the
usual cosmological sources without a cosmological constant Λ

[39]; the screening of Λ in the past by the new contributions
of dust in the Friedmann equation [47]; the effective source
that yields constant inertial mass density arises in the energy–
momentum log gravity (EMLG) [47]; the screening of the shear
scalar (viz., the contribution of the expansion anisotropy to the
average expansion rate of the universe) via the new contribution
of dust in the Friedmann equation in quadratic EMSG [56]—
this model can lead to exactly the same Friedmann equation of
the standard ΛCDM model even with anisotropic expansion; the
altered past or far future of the Universe [43,44,62]; etc. The
particular model of EMSG we consider in this work is the EMPG
[39,40], a specific model of EMSG with the choice of f (TµνTµν) =

1 The Schwarzchild metric is not the unique vacuum solution in this case,
ince Birkoff’s theorem does not hold (see [23] for details).
2

α(TµνTµν)η where α is the coupling parameter and η is a constant
it controls whether the EMPG modification will be more effective
t large energy density scales/in the early universe or low energy
ensity scales/in the late universe); and we will study EMPG in
he weak field, slow motion (Newtonian and post-Newtonian)
imit. Using the effective EMT interpretation, we show that there
s a direct analogy between the effective matter variables of
MSG and the standard matter variables of GR which provides
s with the most general slow-motion condition of the model.
e illustrate that the Poisson’s equation remains the same as in
R, except that the standard energy density ρ is replaced by the
ffective energy density ρeff. Recall that in astronomy we do not
sually measure/observe the mass of an astronomical object di-
ectly, but actually find it by Keplerian methods, namely, inferring
rom nearby orbits, e.g., from the measurements/observations of
he planet’s/satellite’s orbital semi-major axis and period revolv-
ng about it. As there is no modification in the curvature sector of
he theory, viz. spacetime is still governed by GR, albeit, with the
ffective EMT, that EMT can be solely inferred via astronomical
ethods. Hence, the mass (energy) density that we infer with
uch methods is the effective mass (energy) density, i.e., the con-
entional Newtonian potential is determined byMeff instead ofM .
n important corollary is that one component of the Newtonian
imit approximation, the slow motion condition, |p/ρ| ≪ 1, will
ave to be replaced by |peff/ρeff| ≪ 1 if one analyses astrophysical
bjects. Note that the former may not necessarily be satisfied in
ases where the latter is.
The paper is structured as follows: In Section 2, we present

he detailed framework of EMPG; in Section 3, we derive the
quations of motion (EoM) in the linearized theory of EMPG, dis-
uss the slow motion condition, Newtonian and post-Newtonian
imits of the model; in Section 4, we confirm our results from
he Schwarzschild exterior solution; in Section 5, we presented
n assessment on constraining α and η from the slow motion
ondition; and in Section 6, we draw final conclusions from our
esults.

. Energy–momentum powered gravity

The action for EMSG is

=

∫
d4x
√
−g

[
1
2κ

R+ f (TµνTµν)+ Lm

]
, (1)

where κ = 8πG (G is Newton’s constant), g is the determinant of
he metric tensor gµν , R is its Ricci scalar, Lm is the Lagrangian
density describing the matter source and Tµν is its EMT; and f is
an arbitrary function of the Lorentz scalar TµνTµν [38–40]. Here
and throughout the paper, we work in units such that the speed
of light, c , equals unity. The variation of this action with respect
to the inverse metric gµν is

δS =
∫

d4x
[

1
2κ

δ(
√
−gR)

δgµν
+

δ(
√
−gLm)
δgµν

+ f (TσϵT σϵ)
δ(
√
−g)

δgµν

+
∂ f

∂(TλξT λξ )
δ(TσϵT σϵ)

δgµν

√
−g

]
δgµν,

(2)

and, as usual, the definition of the standard EMT in terms of the
matter Lagrangian density Lm reads

Tµν = −
2
√
−g

δ(
√
−gLm)
δgµν

= gµνLm − 2
∂Lm

∂gµν
, (3)

for which we suppose Lm depends only on the metric tensor
components, and not on its derivatives; because the matter fields
usually couple only to the metric and not to its derivatives—this
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s the case for the Maxwell field and gauge fields in general, as
ell as for scalar fields.
Hence, the field equations—or EoM—for EMSG are

µν = κ

(
Tµν + fgµν − 2

∂ f
∂(TσϵT σϵ)

θµν

)
, (4)

where Gµν = Rµν −
1
2Rgµν is the Einstein tensor,

θµν = −2Lm

(
Tµν −

1
2
gµνT

)
− TTµν

+ 2T λ
µTνλ − 4T σϵ ∂2Lm

∂gµν∂gσϵ
,

(5)

hich is a new tensor defined as θµν ≡ δ(TσϵT σϵ)/δgµν , and
= gµνTµν is the trace of the EMT.
We proceed with a particular form of EMSG, the powered form

f the Lorentz scalar TµνTµν in the action (1), known as EMPG,
escribed by

(TµνTµν) = α(TµνTµν)η, (6)

where η is the dimensionless constant parameter that determines
the power of the energy–momentum squared term and α is
the constant parameter that measures the gravitational coupling
strength of the EMPG modification to GR (note that α’s dimen-
sion depends on η) [39,40]. Accordingly, from Eqs. (4), the field
equations for EMPG are

Gµν = κ

[
Tµν + α(TσϵT σϵ)η

(
gµν − 2η

θµν

TλξT λξ

)]
, (7)

in which the new terms arising from the EMPG modification,

T empg
µν ≡ α(TσϵT σϵ)η

(
gµν − 2η

θµν

TλξT λξ

)
, (8)

vanish in the α → 0 limit in an obvious way, independent of
η. We call all the matter-related terms on the right-hand side of
Eq. (7) effective EMT, T eff

µν . It follows that

T eff
µν ≡ Tµν + T empg

µν , (9)

and, as the Gµν is fully determined by this term, according to the
EoM (7) and definitions (8) and (9)

Gµν = 8πG T eff
µν . (10)

his means that the spacetime geometry side of the field equa-
ions is described exactly as in GR, while the material side is
escribed by the effective EMT composed of the standard and
MPG modification parts. From here on, we will call the EMT
efined by Eq. (3) the GR-standard EMT. As the modifications ap-
ear only in the material side of the field equations in contrast to
he case with f (R) and Brans–Dicke type theories, it is sufficient
o determine the components of the effective EMT in our model,
ore generally in any particular model of EMSG.
The twice-contracted Bianchi identity, ∇µGµν = 0, implies

rom Eq. (10) that the divergence of the effective EMT always
anishes;
µT eff

µν = 0. (11)

ote however from Eq. (9) that the covariant derivatives of Tµν

and T empg
µν do not necessarily vanish, namely, the matter EMT

is not necessarily conserved (∇µTµν = 0) in EMPG. As matter
source, let us take the usual perfect fluid, which is often used in
settings ranging from compact objects to cosmology;

Tµν = (ρ + p)uµuν + pgµν, (12)

where ρ > 0 and p are, respectively, the fluid’s energy density
and thermodynamic pressure measured by an observer moving
3

with the fluid, uµ
=

dxµ
dτ is the fluid’s four-velocity satisfying the

condition uµuµ
= −1. Here τ is the proper time along the world

ines, t = x0 is the coordinate time, and xµ
= xµ(τ ) are the local

pacetime coordinates with µ = 0, 1, 2, 3.
As the definition of the matter Lagrangian density that gives

rise to the EMT of a perfect fluid is not unique, one could choose
either Lm = p or Lm = −ρ, which results in the same EMT, viz.,
the Tµν that describes perfect fluid matter distributions as given
in Eq. (12). In this study, following the literature to date on EMSG
and on similar theories (see [42,65–67]), we consider Lm = p.
Hence, the Lorentz scalar TσϵT σϵ and the tensor θµν read2

TσϵT σϵ
= ρ2

+ 3p2, (13)

θµν = −(ρ + p)(ρ + 3p)uµuν . (14)

Substituting Eq. (12) along with Eqs. (13) and (14) into the
ffective EMT defined in Eq. (9), we obtain
eff
µν =(ρ + p)uµuν + pgµν

+ α(ρ2
+ 3p2)η

[
gµν + 2η

(
1+

4ρp
ρ2 + 3p2

)
uµuν

]
.

(15)

t can be seen that the terms in the above equation are multiplied
y either uµuν or gµν which makes it possible to write it in the
tandard perfect fluid EMT form
eff
µν = (ρeff + peff)uµuν + peffgµν, (16)

here ρeff and peff are, respectively, the effective energy density
nd effective pressure identified as

eff = ρ − α(ρ2
+ 3p2)η

[
1− 2η

(
1+

4ρp
ρ2 + 3p2

)]
,

peff = p+ α(ρ2
+ 3p2)η.

(17)

e note that the form Eq. (16) for the effective EMT3 together
ith the field equation (10) allows us to make an analogy be-
ween the effective matter variables (ρeff, peff) of EMPG and the
tandard matter variables (ρ, p) of GR, that is, ρeff ←→ ρ and
eff ←→ p. And, it can be seen directly from Eq. (17) that
he power η is necessarily nonnegative for ρeff and peff not to
e divergent as ρ → 0, when the equation of state (EoS) is
ssumed to be barotropic, i.e., p = p(ρ); satisfying the extra
ondition p(ρ = 0) = 0. Consequently, for a viable effective
ource described by the standard perfect fluid EMT we must have
≥ 0.

. The weak-field limit

Let us recall that in any metric theory of gravitation, gravity is
xplained as a manifestation of the curvature of spacetime. Our

2 In accordance with the convention in the literature on EMSG so far, we
mitted the ∂2Lm

∂gµν ∂gσϵ term in the expression of the new tensor θµν given in
q. (5), and for the relevant discussion, we refer the reader to the recent work
ef. [68], appeared on arXiv during the review process of the current paper.
3 From Eqs. (11) and (16), we have ∇µ(ρeffuµ) = −peff ∇µuµ which along

with (17) gives ∇µ{[ρ − α(1− 2η)ρ2η
]uµ
} = −αρ2η

∇µuµ for dust (p = 0), then
we see that the matter–current conservation equation in this model would lead
to a matter creation/annihilation on cosmological scales in an expanding (H > 0)
universe since ∇µuµ

= 3H where H is the Hubble parameter and peff is not
necessarily zero, for dust as well. Also, ∇µuµ

̸= 0 for a galactic system due to the
stellar velocity and the galactic potential, hence, the matter creation/annihilation
occurs within galaxies as well. The diversity in rotation curves of spiral galaxies
and the number of observed satellites of the Milky Way remain as unresolved
issues in the CDM paradigm of the standard GR [69]. As a possible solution,
Refs. [70–72] suggest a mechanism in which DM particles exchange energy by
colliding with one another giving rise to deviations in the inner halo structure.
Similarly, our model that anticipates the creation/annihilation of DM can be
tested by its effects on the galactic and subgalactic scales.
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im in this work is to investigate the weak-field behaviour of
MPG, that is, behaviour close to the case of no gravity—hence
o curvature, i.e., flat spacetime (Note that we did not make any
ssumptions on the spacetime metric gµν so far). Therefore, we

suppose spacetime to be almost flat, so that the metric gµν of the
curved spacetime can be split as gµν = ηµν + hµν , where ηµν is
the Minkowski spacetime metric representing the flat spacetime
and hµν is a small perturbation on top of it. Then, the Ricci tensor
to first order in hµν reads

R(1)
µν =

1
2
(∂α∂µhνα + ∂α∂νhµα − □hµν − ∂µ∂νh), (18)

where □ = ηµν∂µ∂ν is the d’Alembert operator and h is the trace
of hµν . Next, we impose, without loss of generality, the Lorenz-
gauge specified by gµνΓ α

µν = 0; for the first order perturbation,
this becomes ∂βhαβ−

1
2∂αh = 0. In this gauge, the first order Ricci

tensor simplifies to

R(1)
µν = −

1
2
□hµν . (19)

ince Gµν is the trace-reversed tensor of Rµν , we define the trace-
eversed perturbation as h̄µν = hµν −

1
2ηµνh so that G(1)

µν =
1
2□h̄µν . Thus, the field Eqs. (10) for EMPG become

− □h̄µν = 16πG T eff
µν (20)

n the weak field limit. Note that this is the same as what one
ould obtain for GR, except for the addition of the ‘‘eff’’ label,

.e., the only difference here is that in GR the cause of gravity Tµν ,
hereas in our model it is T eff

µν .
On the other hand, the field equations can be written in an

lternative and equivalent form with the Ricci tensor on the
eft-hand side rather than the Einstein tensor:

µν = 8πG
(
T eff
µν −

1
2
gµνT eff

)
. (21)

This form is valid for both GR and EMPG, without/with the label
‘‘eff’’. Then, to first order, we obtain

− □hµν = 16πG
(
T eff
µν −

1
2
gµνT eff

)
, (22)

nd will employ this form in the following subsection to illustrate
point.

.1. Newtonian and post-Newtonian limits

Although conceptually very different, Newton’s law of univer-
al gravitation is the limiting case of Einstein’s field equations
hen gravity is everywhere weak, and all speeds are very small
ompared to the speed of light (v ≪ 1). Therefore, any alter-
native theory of gravitation must also be studied in this limit to
make contact with the observational/experimental Solar System
constraints, as discussed in the Introduction.

The first of these limits, as discussed above, leads to weakly-
curved spacetime deviating only slightly from the flat (Minkowski)
spacetime metric, governed by linearized theory, whose equa-
tions are in the form of Eq. (20), alternatively, Eq. (22), for both GR
and EMPG (without and with ‘‘eff’’ label, respectively). Note that
we have made no assumption on the four-velocity uµ associated
with the fluid yet.

In an almost flat spacetime, the four velocity can be written
as uµ

=
1√
1−v2

(1, vi), where vi
=

dxi
dt is the three-velocity field

aving the magnitude of v [73] with i = 1, 2, 3 reserved for
patial coordinates. For the second limit, we now concentrate
n the matter distributions subject to the slow motion condition
efined as all speeds being very small compared to the speed of
4

ight (v ≪ 1), which implies the following hierarchy between the
omponents of the effective EMT
eff
0i /T eff

00 ∼ v , T eff
ij /T eff

00 ∼ v2, (23)

cf. Ref. [74]. It is noteworthy that when the gravitational field
is weak (low curvature) and the particle is nearly at rest in the
chosen reference frame, then the proper time (τ ) clock runs at
nearly the same rate as coordinate time (t) clock, viz., dt ≃ dτ ,
which implies

vi ≃ ui ≃ v ≪ 1. (24)

Notice that according to the hierarchy stated in Eq. (23), regarding
the slow motion condition imposed in EMPG and also in any other
gravity theory comprising matter-type modifications minimally
coupled to the curvature, the proper approach is to take into
account the effective matter variables rather than the standard
ones. We emphasize that in this type of theories, the slow motion
condition needs to be handled carefully; for instance, in our
model, even if the effective pressure is negligible, we can still
have nonnegligible standard pressure or vice versa.

3.1.1. Newtonian limit
Assuming the metric is diagonal and time-independent (∂0hµν

= 0, i.e., □ = ∇2), which indicates that hµν = diag[−2Φ,−2Ψ ,
−2Ψ ,−2Ψ ] is also a static field, one can obtain the following line
element in isotropic coordinates (t, r, θ, φ)

ds2 = − [1+ 2Φ(r)] dt2 + [1− 2Ψ (r)] (dr2 + r2dΩ2), (25)

here dΩ2
= dθ2

+ sin2 θ dφ2; Φ(r) and Ψ (r) are radial per-
turbative potentials satisfying the weak field approximation such
that |Φ| ≪ 1 and |Ψ | ≪ 1. Then, Eq. (22) reduces to

∇
2hµν = −16πG

(
T eff
µν −

1
2
gµνT eff

)
, (26)

here ∇ is the three-dimensional gradient operator. In the So-
ar system, these potentials have values of about 10−5 (in ge-
metrized units) at most [74]. Hence, we finally reach

2Φ = 8πG
(
T eff
00 +

1
2
T eff
)

, (27)

∇
2Ψ = 8πG

(
T eff
11 −

1
2
T eff
)

. (28)

urthermore, from Eq. (23), the slow motion condition requires
eff
00 ≫ T eff

0i ≫ T eff
ij , (29)

hence, the components of the effective EMT can be approximately
written as T eff

00 ≃ ρeff, T eff
0i ≃ ρeffvi and T eff

ij ≃ ρeffvivj + peffδij
cf. Refs. [73,75]). Accordingly, we have peff ≪ ρeff; viz., the
ondition (29) implies, except T eff

00 , all the other components of
eff
µν are negligible, so that we take T eff

0i = T eff
ij = 0 stating that

n this approximation, insofar as gravity is concerned, effective
omenta, pressure, and stresses are negligible. In line with this,
e also have T eff

≈ −T eff
00 . Therefore, from Eqs. (27) and (28), we

btain ∇2Φ = ∇2Ψ = 4πG T eff
00 which along with asymptotic

latness implies that Ψ = Φ in the Newtonian limit. Eventually,
he field equations turn into
2Φ = 4πGρeff, (30)

hich is the Poisson’s equation of gravity, and the geodesic
quation into

d2x⃗
dt2
≡ a⃗ = −∇Φ, (31)

which gives the Newtonian acceleration law in a gravitational
potential Φ . These two equations reveal an equivalence between
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ewton’s theory and EMPG in the weak field, slow motion limit,
ut with ρeff instead of ρ.
For a spherically symmetric body surrounded by vacuum—we

an safely ignore the cosmologically inferred value of vacuum
nergy density in the astrophysical setups we are dealing with
ere—, Eq. (30) leads to

= −
GMeff

r
= −

G
r

(
M +Mempg

)
, (32)

here Meff = 4π
∫ R
0 ρeffr2dr and M = 4π

∫ R
0 ρr2dr with R being

the radius of the spherical body.4 We would like to note that the
vanishing divergence of the effective EMT given in Eq. (11) along
with Eq. (16) guarantees dMeff/dt = 0 only in the Newtonian
limit. Thereby, in order to assure that Meff does not change with
time, the exact continuity equation,5 which is independent of
the conservation of the effective EMT, should also be introduced
in EMPG as ∇µ(ρeff0uµ) = 0 instead of the standard GR form
∇µ(ρ0uµ) = 0 where ρeff0 is the effective rest-mass density
defined as ρeff = ρeff0(1 + Πeff) with Πeff being the specific
internal energy—in the Newtonian limit, we drop the subscript
0 since ρeff ≈ ρeff0 when we consider the slow motion approx-
imation v2

∼ Πeff ∼ GMeff/r ∼ peff/ρeff. These conditions
are satisfied in the Solar System; as is well known, in the Solar
System, the effects of the gravitational field are weak, objects
(except photons) move slowly and the Sun can be considered
to be surrounded by vacuum. So, in the EMPG model applied
to the Solar System, Φ as given by (32) can be taken as the
conventional Newtonian potential when Meff is identified as the
‘‘Newtonian mass’’ that would be measured via astrophysical (Ke-
plerian) methods such as period–radius relationships for orbits of
planets or satellites, augmented by measurements of deflection of
light, time delay etc.—though, we remind that Eq. (31) does not
really apply to photons (they are fast, not slow), so the magnitude
of the deflection of a light beam in gravitational field is predicted
to be twice as large in GR than in Newton’s theory.

In a recent paper [59], the authors calculate the deflection of
light by consideringM = 4π

∫ R
0 ρr2dr as the mass measured from

astrophysics in order to recover the GR value of the deflection in
case of α = 0, such that EMSG modification Mempg is attached to

4 Here we have dropped the constant potential term as we assume asymp-
otic flatness (Φ → 0 as r →∞); also, recall that a constant potential does not
affect the acceleration of the test particles.
5 Similar to the field Eqs. (4), the continuity equation is obtained from the

variational principle as well [76,77]. Let us express the EoS of the perfect fluid
in the form p = p(h, s) where h = (ρ+ p)/ρ0 is the specific relativistic enthalpy
and ρ0 is the rest-mass density. The first law of thermodynamics can be written
as dp = ρ0 dh − ρ0 T ds where T is the temperature and s is the specific
entropy. We introduce the Taub vector as Vµ

= huµ , which is defined by five
scalar velocity-potential fields (φ, α, β, θ, s) that are independent of the metric
tensor [77]. Namely, in the velocity-potential representation, the Taub vector is
expressed as Vµ = ∂µφ + α ∂µβ + θ ∂µs, and from the normalization condition
of four-velocity, we obtain h2

= −gµνVµVν . In the presence of perfect fluid
described by Lm = p, we vary the action (1) with respect to the dynamical
variable φ as follows;

δS =
∫

d4x
{

∂[
√
−g (p+ f )]

∂φ
+ ∂µ

[
∂[
√
−g (p+ f )]
∂(∂µφ)

]}
δφ,

here the first term vanishes since the Taub vector depends on the derivative
f φ but not φ itself. Consequently, substituting ∂p

∂h

⏐⏐
s = ρ0 from the first law of

thermodynamics yields

δS =
∫

d4x
{
∂µ

[
√
−gρ0

∂h
∂(∂µφ)

]
+ ∂µ

[
∂(
√
−g f )

∂(∂µφ)

]}
δφ.

sing the definition of h along with the fact that ∇µVµ
=

1
√
−g ∂µ(

√
−gVµ),

ithout any further calculation, it can be seen that ∇µ(ρ0uµ) ̸= 0 in EMSG,
instead we have ∇µ(ρ0uµ) = −(terms arisen due to f ). On the other hand,
ccording to our effective source interpretation, the effective matter Lagrangian
ensity is defined as Leff

m ≡ p + f (TµνTµν ) = peff and following the same
ariational procedure with effective variables leads to ∇ (ρ uµ) = 0.
µ eff0 v

5

he γ parameter resulting in its deviation from unity. However,
it is clear from the discussions in the above paragraphs that if
the observer does not know the energy density or the mass of
the astrophysical object in an independent way except for ob-
servation of orbits or similar measurements, the observer cannot
distinguish whether the mass of the astrophysical object is Meff
or M , i.e., whether the curvature of the spacetime is governed
by GR or EMPG. To prevent such a misinterpretation of the PPN
parameter γ , this proper reasoning should be followed both in
any particular model of EMSG theory and in models of matter–
curvature coupling gravity, if matter is minimally coupled to
curvature, in other words, if the modification to GR is of the form
f (Lm, T , TµνTµν), i.e., is a function of only matter-related terms.

Next, substituting ρeff defined in Eq. (17) into Eq. (30), we can
also write the Poisson’s equation in terms of the standard matter
variables:

∇
2Φ = 4πG

{
ρ − α(ρ2

+ 3p2)η
[
1− 2η

(
1+

4ρp
ρ2 + 3p2

)]}
.

(33)

s we have T eff
ii = 0, but not Tii = 0 in the Newtonian limit, we

ee not only ρ, but also p in Eq. (33), in contrast to GR (α = 0).
e remark that Ref. [52] briefly discusses the weak field limit
f the quadratic EMSG model (viz., η = 1 case of the EMPG). In
hat study, however, the authors limit the scope of the discussion
y assuming |p/ρ| ≪ 1 from the outset. The full scope of the
iscussion in the framework of the EMPG model requires the use
f a more general condition than |p/ρ| ≪ 1, that is,

peff
ρeff

⏐⏐⏐⏐≪ 1, (34)

nd we employ the latter in this work. The condition given in
q. (34) does not necessarily imply that |p/ρ| ≪ 1; except of

course, in the GR limit (α → 0) of the EMPG model. Yet, it is
still useful and would be realistic to describe most of well known
astrophysical objects such as planets, stars possessing negligible
pressure in comparison with their energy densities. In the Solar
System, within the context of GR, typical p/ρ values are 10−10 for
he Earth, 10−5 for the Sun. Moreover, this ratio for the surface
f a white dwarf is about 10−4 [78]. It is, on the other hand,
0.1 for the surface of a neutron star6 and ∼ 1 for the event

orizon of a blackhole based on Zeldovich (stiff) fluid (p = ρ)
hich is the most rigid EoS compatible with the requirements of
elativity [79]. We proceed with the general case which provides
s with a mathematical simplicity for applying our results to the
strophysical objects with structures and postpone the discussion
f the limit |p/ρ| ≪ 1 until Section 5.

.1.2. Post-Newtonian limit
The Newtonian limit of any gravity theory should be able to

xplain aspects of light propagation such as deflection of light
nd Shapiro time delay in addition to the Newtonian properties
f planetary and satellite orbits. However, for cases like the peri-
elion shift of Mercury in which the more accuracy is needed, the
inearized theory is inadequate and one must include the second
rder perturbation terms as well.
Accordingly, let us proceed with writing the Ricci tensor in the

econd order hµν ’s as [80]

(2)
µν =

1
2

{
hαβ (∂µ∂νhαβ − ∂α∂µhνβ − ∂α∂νhµβ )

6 See Figure 1(b) in Ref. [44] for effective EoS versus the energy density of
he neutron star matter stress where the case α = 0 (GR) gives the EoS of the
atter stress itself for various realistic EoS parametrizations. The surface value
f p/ρ is achieved for p = 0. For α ̸= 0 in quadratic EMSG model, EoS parameter
n the surface does not deviate from GR, while deviations are seen on the core
alues in some parametrizations.
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+
1
2
∂µhαβ∂νhαβ

+ ∂αhβν(∂αhβ
µ − ∂βhαµ)

+

[
∂αhαβ

−
1
2
ηασ ∂βhασ

]
(∂βhµν − ∂µhνβ − ∂νhµβ )

}
. (35)

Including the second order perturbations in Lorenz gauge implies
hµν(∂µhαν+∂νhαµ−∂αhµν) = 0, and hence, the second order Ricci
tensor becomes

R(2)
µν =

1
2
hαβ∂µ∂νhαβ +

1
4
∂µhαβ∂νhαβ

+
1
2
∂αhβν(∂αhβ

µ − ∂βhαµ).

(36)

hen, the tt component of Eq. (21) up to second order perturba-
ions reads

2Φ(2)
− 2

(
dΦ

dr

)2

= 4πGρeff, (37)

nd yields the solution

(2)
= −

GMeff

r
+

G2M2
eff

r2
. (38)

Therefore, in the EMPG model, the components of the post-
Newtonian metric take the following form:

g00 = −1+
2GMeff

r
−

2G2M2
eff

r2
+ O

(
1
r3

)
, (39)

11 = 1+
2GMeff

r
+ O

(
1
r2

)
. (40)

We note that with this solution, the line element (25) ap-
roaches the Minkowski spacetime metric as r → ∞ and has

exactly the same r dependence as in GR. Conversely, this case
does not apply to gravity models with curvature-type modifica-
tions. For instance, f (R) type models give rise to an extra term
of the form ∝ e−mr/r with m being a constant, like Yukawa type
potentials, and therefore change the r dependency of the gravita-
tional potential and require two different parameters, instead of
the single Meff parameter in EMPG, to fix the solution [81].

3.1.3. Parametrized post-Newtonian formalism
Through the PPN formalism, gravitational theories can be dis-

tinguished from each other by the numerical coefficients ap-
pearing in front of the metric potentials. As first formulated by
Eddington, Robertson and Schiff [82–84], and later fixed system-
atically by the approach of Nordvedt and Will [85–87] in this
formalism, the coefficients are replaced by various compositions
of a total of ten parameters whose values depend on the gravity
theory under consideration. They used it in interpreting the Solar
System experiments. The PPN metric up to the order we have
calculated above is written as follows

g00 = −1+ 2U − 2βU2, (41)

g11 = 1+ 2γU . (42)

As is seen from Eqs. (39) and (40), in EMPG, we have

U =
GMeff

r
, (43)

hich implies that

= 1 and β = 1, (44)

xactly the same values in GR which in turn are consistent with
he experimental and observational bounds [30,74].

The PPN parameter γ , which is the measure of space-curvature
roduced by unit rest mass, plays a crucial role in the Solar
ystem tests of a gravitational theory. In GR, we know that a light
ay passing near the Sun is deflected by some angle (deflection of
6

light) and a radar signal from Earth sent on a round-trip passing
near the Sun requires some extra time compared to the time
interval predicted from Newtonian theory (time delay of light).
Both these deflection angle and delayed time is proportional to
the coefficient 1

2 (1+ γ ). The factor 1
2 here appears in any metric

theory of gravity while the factor γ

2 changes from one theory
to the other. The other parameter β , which is the measure of
nonlinearity in the superposition law for gravity, is related to the
perihelion shift of Mercury through the coefficient 1

3 [2(1+γ )−β].
ue to the observational limits, other PPN parameters should be
ery close to zero in alternative theories of gravity, and they are
utomatically zero in EMPG with nonnegative η, as in GR.

4. Schwarzschild exterior solution

The particular models of EMSG satisfying f (TµνTµν) = 0 when
µν = 0 are equivalent to GR in vacuum. Obviously, this is also
he case for the EMPG model with η ≥ 0. Therefore, assuming
η ≥ 0, the field equations of the EMPG model for vacuum satisfy
the spherically symmetric and static Schwarzschild line element,
in Schwarzschild coordinates (t, r̄, θ, φ),

ds2 = −
(
1−

2GMeff

r̄

)
dt2 +

1(
1− 2GMeff

r̄

)dr̄2 + r̄2dΩ2, (45)

here Meff is an integration constant that is subject to be deter-
mined from astronomical/astrophysical measurements, e.g., the
period and semi-major axis of a planet’s orbit. Meff also corre-
ponds to the volume integral of ρeff by means of the tt compo-
ent of the field Eqs. (7), viz., Meff = 4π

∫ R
0 ρeffr2dr for a spherical

object. This vacuum solution can also be written in isotropic

coordinates via the transformation r̄ = r
(
1+ GMeff

2r

)2
[78], and

we can obtain the Newtonian and post-Newtonian limits of EMPG
in this way as well. In isotropic coordinates, the expression given
in Eq. (45) turns out to be

ds2 =−

(
1− GMeff

2r

1+ GMeff
2r

)2

dt2 +
(
1+

GMeff

2r

)4

(dr2 + r2dΩ2).

(46)

n the weak field region, that is, at distances far away from the
assive object which corresponds to r ≫ GMeff, the metric
ncoded in Eq. (46) can be expanded as

00 = −1+
2GMeff

r
−

2G2M2
eff

r2
+ O

(
1
r3

)
, (47)

11 = 1+
2GMeff

r
+ O

(
1
r2

)
. (48)

We see that the metric components given in Eqs. (47) and
48) are identical to the ones given in Eqs. (39) and (40), hence,
ive rise to the same PPN parameters obtained from weak field,
low motion limit (see Section 3.1.3). This is a result in line with
ur claim that the slow motion condition should be written in
erms of effective variables. It is also worth noting here that the
nly difference between the line element—expressed in either
chwarzschild coordinates (45) or isotropic coordinates (46)—
and the one obtained in GR is that where the term Meff is,

there is M . Both are not directly observable parameters but are
parameters derived using EMPG or GR from observational data
on Kepler orbits, deflection of light etc. That is, using the same
astronomical data will result in exactly the same mass value
whether EMPG is used or GR is used, but this mass value will
be the value of Meff in EMPG and the value of M in GR. In the
case of EMPG, if there is information about the values of the
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MPG parameters α and η from another independent physical
vent (e.g., from cosmological observations), then it is possible
o separate the value of Meff = M + Mempg into the values of its
components M and Mempg.

5. Slow motion conditions

Assuming a barotropic fluid, viz., a fluid with an EoS of the
form p = p(ρ), and p(ρ = 0) = 0, we have already shown that η,
the power of the Lorentz scalar TµνTµν , is necessarily nonnegative
for ρeff and peff not to be divergent [see Eq. (17)] as ρ → 0.
Therefore, we must have η ≥ 0 to be able to obtain a viable
effective source within EMPG. In order to determine the slow
motion condition of EMPG, we have used the effective energy
density and pressure of the massive body since these are the
values that are measurable in the long-range regime. We now
analyse and discuss effects of EMPG corrections by considering
the standard ρ and p accompanied by parameters α and η in
contrast to GR (α = 0). Besides the slow motion condition
|peff/ρeff| ∼ v2

≪ 1 [see Eq. (23)], we also have to assign a
relationship between p and ρ specifying the EoS p = p(ρ). Let
us proceed by writing the effective energy density and pressure
(17) in the following form:

ρeff = ρ + ρempg, (49)

peff = p+
ρempg

2η
(
1+ 4p/ρ

1+3p2/ρ2

)
− 1

, (50)

here ρempg represents the extra terms arising from the EMPG
odification, viz.,

empg = α′ρ̄

(
ρ

ρ̄

)2η (
1+

3p2

ρ2

)η [
2η
(
1+

4p/ρ
1+ 3p2/ρ2

)
− 1

]
.

(51)

e should point out that although the last term in Eq. (50) with a
ossibly vanishing denominator seems problematic at first glance,
ubstituting Eq. (51) back into Eq. (50) drops this factor. Here the
imensionless coupling parameter is defined as
′
= αρ̄ 2η−1, (52)

where ρ̄ may be taken as, e.g., ρ̄ = 103 kg/m3, referring the mass
(since c = 1) of 1 m3 water, a scale consistent with the average
densities of the Solar System bodies, such as the Sun and planets—
so that we use a scale that can be defined with respect to an
object’s mass which is known/measured by a method that does
not include gravitational effects. Note that the dimensionality of
the parameter α depends on η which renders it unreasonable
to make a comparison between magnitude of α for different
models; through the redefinition of the model parameter above,
we overcome this issue. Next, we eliminate ρempg in Eqs. (49) and
(50), hence, realize that independent of α′, ρeff and ρ are related
as follows:

ρeff

{
1+

[
1− 2η

(
1+

4p/ρ
1+ 3p2/ρ2

)]
peff
ρeff

}
= ρ

{
1+

[
1− 2η

(
1+

4p/ρ
1+ 3p2/ρ2

)]
p
ρ

}
. (53)

We shall henceforth focus on a particular class of EoS’s satis-
ying the condition⏐⏐⏐⏐ pρ
⏐⏐⏐⏐≪ 1. (54)

f one considers that the pressure inside the nonrelativistic as-
rophysical objects is much less than the corresponding energy
7

density, this is indeed a rather natural assumption. Therefore, us-
ing Eq. (54) in the effective energy density (49) and pressure (50),
these become

ρeff = ρ + ρempg, (55)

peff = p+
ρempg

2η − 1
, (56)

here the energy density arising from the EMPGmodification (51)
eads

empg = (2η − 1)α′ρ̄
(

ρ

ρ̄

)2η

. (57)

As mentioned above, Eq. (56) seems to explode for η = 1/2, but
that is not actually the case; substituting Eq. (57) into Eq. (56),
it can be seen immediately that the factor 2η− 1 responsible for
this situation drops. Accordingly, the slow motion condition can
be restated for a general η in terms of the standard energy density
and pressure as⏐⏐⏐⏐ peffρeff

⏐⏐⏐⏐ = ⏐⏐⏐⏐p+ (2η − 1)−1ρempg

ρ + ρempg

⏐⏐⏐⏐≪ 1, (58)

rom which, however, it is not easy to see the validity of slow
otion condition. Instead, manipulating Eqs. (55) and (56), or
quivalently setting |p/ρ| ≪ 1 in Eq. (53), we obtain

eff

[
1+ (1− 2η)

peff
ρeff

]
= ρ

[
1+ (1− 2η)

p
ρ

]
, (59)

which turns out to be quite useful. As can be seen from Eq. (59),
if peff/ρeff ≈ p/ρ, then ρeff ≈ ρ independent of the value of
η. Otherwise, ρeff–ρ relation depends on η and ρeff can even
take negative values. Having said that, we know from cosmo-
logical analyses to date that η is expected to be at the order of
O(η) = 1. In Ref. [39], the authors show that η ∼ 0 can explain
the late-time acceleration of the universe from the dust’s EMPG
contribution (in this case, since it resembles the cosmological
constant), without resorting to a cosmological constant (Λ) or
dark energy and find that η = −0.003 ± 0.023 at 95% confi-
dence level from their observational analyses. In a more recent
cosmological analysis [88], it is obtained 0 < η < 0.18 at 95%
confidence level, and η = 0.26 ± 0.25 at 95% confidence level
when a Λ is allowed on top of EMPG. In the case η = 1, in the
modified Friedmann equation, the dust energy density ρm ∝ a−3
is accompanied by the additional energy density term mimicking
stiff (Zeldovich) fluid ρemsg ∝ a−6 (see the higher-order correction
terms on effective EMT given in Eq. (15) which are proportional
to ρ2η for arbitrary η). The present-day density parameter of such
stiff fluid-like sources (effective or actual), Ωstiff, on top of the
standard ΛCDM model are extremely well constrained; assuming
it is non-negative definite, the upper bounds on it ranges from
∼ 10−4 to ∼ 10−18 from cosmological analysis depending on
the datasets used (e.g., SnIa, BAO, Planck CMB); and even reaches
∼ 10−23 when big bang nucleosynthesis is considered [89–91].
Similarly, the constraints on the EMPG with η = 1 from neutron
stars suggest that the new terms arising in this case must be
extremely weakly coupled with gravity, viz., |α| ≲ 10−19 m3 kg−1.
From all this, it would be fair to say that η > 1 cases are unlikely
to be realistic. Therefore, in the light of the above discussion
on theoretical and observational bases, we do not expect EMPG
to be realistic out of interval of 0 ≲ η ≲ 1. Consequently, if
we also consider the η ≥ 0 condition we introduced for the
non-divergent ρeff and peff in vacuum solutions, then the interval
0 ≤ η ≲ 1 should be taken for realistic implementations of the
EMPG model. Now, with this condition in mind, we can continue
our investigation in this chapter.

When we consider the conditions |peff/ρeff| ≪ 1 (implied
by the slow motion condition) and |p/ρ| ≪ 1 (expected to
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e applied to most astrophysical objects [74]; however, excep-
ions are possible where it will not apply under extreme condi-
ions, such as the deep interior of neutron stars, see, e.g., [44])
imultaneously, Eq. (59) implies that

eff ≈ ρ, (60)

or O(η) = 1 (required for the realistic implementations of
EMPG). Then we see that, if we only demand that the slow motion
condition (implying |peff/ρeff| ≪ 1) to be satisfied, to get ρeff ≈ ρ
rom Eq. (55), ρempg must remain negligible compared to ρ > 0,
iz., we must have

ρempg| ≪ ρ, (61)

hich also guarantees that ρeff > 0 as ρ is positive definite by
efinition. Using these findings, we can also write some condi-
ions between α′ and η:

(i) The case 0 < η < 1/2: When we use Eq. (61) in Eq. (57),
e can write

α′| ≪
(ρ/ρ̄)1−2η

1− 2η
. (62)

rom this inequality we see that the lower energy density, the
maller |α′| must be. This is more emphasized for smaller η
values.

(ii) The case of Scale-Independent EMSG (viz., η = 1/2): This
equires a separate examination, as we cannot use Eq. (59) in this
ase. To do so, we first substitute Eq. (57) in Eqs. (55) and (56),
nd then choose η = 1/2 to get the relation we need;

peff
ρeff

⏐⏐⏐⏐ = ⏐⏐⏐⏐ pρ + α′
⏐⏐⏐⏐≪ 1. (63)

This in turn implies that we must have

|α′| ≪ 1, (64)

regardless of the energy density scale considered.
(iii) The case 1/2 < η ≲ 1: When we use Eq. (61) in Eq. (57),

we can write

|α′| ≪ −
(ρ/ρ̄)1−2η

1− 2η
, (65)

hich differs from Eq. (62) with a minus sign. From this inequal-
ty we see that the higher energy density, the smaller |α′| must
e. This is more emphasized for larger η values.

. Conclusion

We have explored the weak field and slowmotion limits, New-
onian and Post-Newtonian limits, of the EMPG [39,40], namely,
he EMSG [38–40] of the form f (TµνTµν) = α(TµνTµν)η , where
(determines the gravitational coupling strength of the EMPG
odification) and η are constants. In PPN formalism, we have
hown that EMPG with η ≥ 0 (otherwise the EMPG modification
ould diverge in vacuum solutions) and GR are not distinguish-
ble by local tests, say, the Solar System tests; as they lead to (i)
he same form of gravitational potential, keeping PPN parameters
ompletely the same in both theories, and (ii) the same geodesics
or the test particles. However, within the EMPG framework, the
ass of an astrophysical object inferred from astronomical ob-
ervations Mast, e.g., using Keplerian methods, corresponds to the
ffective mass Meff(α, η,M) (viz., the mass of the object resulting
rom the effective EMT describing it, T eff

µν ) with α and η being
he free parameters of EMPG and M being the actual physical
ass (viz., the mass of the object resulting from the actual EMT
escribing it, Tµν). Accordingly, while in the GR framework we
imply have the relation Mast = M , in the EMPG we have Mast =
+Mempg. In the case of EMPG, if there is information about the

8

alues of {α, η} pair or M from other independent phenomena
from cosmological observations, structure of the astrophysical
bject, etc.), then in principle it is possible to infer not only Mast

alone from astronomical observations, but also M and Mempg sep-
arately. We have concluded also that for a proper analysis within
EMPG framework, which leads us to the results we have stated
above, it is necessary to describe the slow motion condition,
which is also related to the Newtonian limit approximation, by
|peff/ρeff| ≪ 1, whereas it is by |p/ρ| ≪ 1 in GR—note that the
latter need not be satisfied for the former to be satisfied.

Finally, although the current work is based on a specific model
of EMSG theory [38–40], namely the EMPG model [39,40], it is
conceivable that our findings would apply to models of EMSG in
general—and further to modified gravity theories such as R +
f (Lm) [41] and R + f (T ) [42] as all these are similar in that
the source is minimally coupled to the curvature. Consequently,
apart from several specific conclusions we have drawn from this
study, we have learned two important lessons; in studies aimed
at constraining the free parameters of such modified theories of
gravity, using astronomical information, caution must be exer-
cised in drawing conclusions, and then such theories may enjoy
a significant advantage, as they escape local tests.
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